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Part B
Large-Scale Data 

Management & Analysis

● LU3. Cloud Computing
○ Cloud Computing Fundamentals 

[Nov 29]
○ Cloud Resource Management and 

Scheduling [Dec 06]
○ Distributed Data Storage[Dec 13]



Part B
Large-Scale Data 

Management & Analysis

● LU4. Large-Scale Data 
Analysis

○ Distributed, Data-Parallel 
Computation [Dec 20]

○ Distributed Stream Processing 
[Jan 10]

○ Distributed Machine Learning 
Systems [Jan 17]



Agenda ● Announcements
● Data-Parallel Collection & Processing
● Data-Parallel DataFrame Operations



Announcements



Announcements

Course Evaluation and Exam

● Course evaluation: 20/02/2025
● Exam date: Feb 07, 3:00pm (90 min written exam)
● Oral Exam for Erasmus Students

○ Schedule available in TeachCenter (23/12/2024)



Motivation and Terminology



Motivation and Terminology

Recap: Distributed Collections

Logical multi-set (bag) of key-value pairs (unsorted 
collection)

Different physical representations key-value pairs can be 
stored in various ways (e.g., database, across files, or in 
memory).

Easy Distribution via Horizontal Partitioning. Data divided 
into "chunks" (shards or partitions) based on the keys. Each 
chunk stored on a different machine (easier to handle 
large-scale data).

How collections are created:  from single file with data or a 
folder of files (even if they’re messy and unsorted).

Key Value

13:00:01 12.1

14:00:05 16.0

13:00:03 12.5

13:00:05 13.0

14:00:04 15.7

14:00:06 16.3

13:00:00 12.1



Motivation and Terminology

Recap: Files and Objects

File: large and continuous block of data saved in a specific 
format (CSV, Binary, etc.).

Object: like a file, but binary and it comes with metadata 
(Images on S3)



Motivation and Terminology

Recap: Object Storage

1. Object Storage (e.g. AWS S3):
a. Data stored as objects (data, metadata, and UID).
b. Ideal for storing unstructured data like media files, 

backups, or large datasets.
c. Objects of a limited size (e.g., 5TB in AWS S3).



Motivation and Terminology

Nehalem Architecture 

● Integrated Memory Controller: Integrated in chip, -- latency and ++ 

memory performance.

● Support for DDR3 Memory: Higher memory bandwidth (compared to DDR2).

● QuickPath Interconnect (QPI): High-speed, point-to-point connection (no 

Front-Side Bus). 

● Enhanced Hyper-Threading: Each core supports two threads (+++ 

performance)

● Multi-Core Scalability: 2 to 8 cores per processor (2 threads / core)

● Improved Cache Design: Dedicated L1 and L2 cache p/core shared L3 cache

Michael E. 
Thomadakis:
The Architecture of 
the
Nehalem Processor 
and NehalemEP SMP 
Platforms, Report, 
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730


Motivation and Terminology

Nehalem Architecture 

● Energy Efficiency: Turbo Boost for dynamic clock speed adjustments.
● Advanced Manufacturing Process: Higher transistor density and better 

efficiency.
● Integrated Graphics (in later models): Some models included integrated 

GPUs.
● Foundation for Modern Architectures: Established the groundwork for 

subsequent Intel architectures like Sandy Bridge and Skylake. Michael E. 
Thomadakis:
The Architecture of 
the
Nehalem Processor 
and NehalemEP SMP 
Platforms, Report, 
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730


Motivation and Terminology

Nehalem Architecture 

● Pipeline
○ Frontend: 

■ Instruction Fetch
■ Pre-Decode
■ Decode CISC 2 uOps (ADD [eax], 5)

● Load the value from memory.
● Add 5 to the loaded value.
● Store the result back to memory.

○ Backend: 
■ Rename/Allocate
■ Scheduler
■ Execute

Michael E. 
Thomadakis:
The Architecture of 
the
Nehalem Processor 
and NehalemEP SMP 
Platforms, Report, 
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730


Motivation and Terminology

Nehalem Architecture 

● Out-of-Order

○ Instructions are not necessarily executed in the 

order they appear in the program

● Execution Engine: 4 Inst x Cycle (IPC=4) 

● 128-bits Floating-point multiplication

● 128-bits floating-point addition

Michael E. 
Thomadakis:
The Architecture of 
the
Nehalem Processor 
and NehalemEP SMP 
Platforms, Report, 
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730


Motivation and Terminology

Flynn’s Classification 
Computer architectures based on how they handle instructions 
and data. 

● SISD:
○ One task at time - one data chunk (e.g. PC running a 

single program)
● SIMD:

○ One task at time - multiple data chunks (e.g. GPUs 
rendering)

● MISD:
○ Multiple tasks - one data chunk (e.g. fault-tolerant 

computers)
● MIMD:

○ Multiple tasks - multiple data chunks (multi-core 
CPUs 1 Core -> Program)

Single Data Multiple Data

Single 
Instruction

Multiple 
Instruction

SISD
(uni-core)

SIMD
(vector)

MISD
(pipeline)

MIMD
(multi-core)

Michael J. Flynn, Kevin W.
Rudd: Parallel 
Architectures.
ACM Comput. Surv. 28(1) 
1996

https://dl.acm.org/doi/pdf/10.1145/234313.234345
https://dl.acm.org/doi/pdf/10.1145/234313.234345


Motivation and Terminology

Distributed, Data-Parallel Computation

● Parallel computation of function foo() ➔ single instruction

○ A single function applied to all data items in parallel.

● Collection X of data items (key-value pairs) ➔ multiple data

○ foo() operates on multiple pieces of data (key-value 

pairs).

● Data parallelism similar to SIMD but more coarse-grained notion 

of “instruction” and “data” ➔ SPMD (single program, multiple 

data)

Y = X.map(X -> foo(x)) X = Data Items (e.g. array), .map (operation 

to each element in X), Y = Output
[Frederica Darema: 
The SPMD Model : 
Past,
Present and Future. 
PVM/MPI 2001]

https://link.springer.com/chapter/10.1007/3-540-45417-9_1
https://link.springer.com/chapter/10.1007/3-540-45417-9_1


Motivation and Terminology

SPMD 

● Dynamic Work Assignment. Processes can self-schedule, ++ 

flexibility & efficiency.

● More General than SIMD. SPMD allows different instruction 

streams for different data. It can handle more complex tasks.

● Efficient Control. Performed at the application level rather 

than the OS level (less costly and more efficient than F&J.

● Applications:

○ MPI (Message Passing Interface)

○ PVM (Parallel Virtual Machine)

○ Grid Computing

[Frederica Darema: 
The SPMD Model : 
Past,
Present and Future. 
PVM/MPI 2001]

https://link.springer.com/chapter/10.1007/3-540-45417-9_1
https://link.springer.com/chapter/10.1007/3-540-45417-9_1


Motivation and Terminology
Model Key Features Pros Cons

BSP (Bulk 
Synchronous)

Global barriers 
enable 
synchronization 
after each phase

+++ Correctness and 
consistency; simple 
to implement

Overhead due to waiting at barriers
Slow for stragglers

ASP (Asynchronous 
Parallel)

Processes run 
independently

Faster execution (no 
waiting)

Accuracy issues from outdated data

SSP 
(Stale-Synchronous 
Parallel)

Controlled staleness 
allows fastest 
processes to proceed 
within a limit

Balances efficiency 
and consistency; 
reduces waiting time 
compared to BSP

Small inaccuracies



Data-Parallel Collection & Processing



Hadoop

Brief Hadoop History

● Google’s GFS + MapReduce [ODSI’04] -> Apache Hadoop 
(2006).

● Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

● Management (Ambari)
● Coordination / workflows (Zookeeper, Oozie)
● Storage (HDFS)
● Resources (YARN)



Hadoop

Hadoop Ecosytem

● Apache Hive (SQL)
○ What it is: 

■ Data warehouse infrastructure built on top of Hadoop.
■ Allows you to query and analyze large datasets stored in Hadoop 

using a SQL-like language called HiveQL.
○ Main Purpose:

■ Querying and analysis of big data using familiar SQL syntax.
■ Suitable for batch processing and data summarization.

○ Use Case:
■ Running SQL queries to analyze log data or generate business 

reports.



Hadoop

Hadoop Ecosytem

● Apache Pig (ETL)
○ What it is: 

■ High-level platform for creating data processing programs in 
Hadoop.

■ Pig language to simplifies the MapReduce jobs writing process.
○ Main Purpose:

■ ETL operations. Cleaning, transforming, and preparing large 
datasets for analysis.

○ Use Case:
■ Processing raw web logs into structured formats for further 

analysis.



Hadoop

Hadoop Ecosytem

● Apache Mahout (ML)
○ What it is: 

■ A library for building scalable machine learning algorithms on 
top of Hadoop.

■ Focused on distributed or scalable implementations of common ML 
algorithms.

○ Main Purpose:
■ Implementing machine learning algorithms like clustering, 

classification, and recommendation systems on large datasets.
○ Use Case:

■ Building a recommendation system for an e-commerce platform using 
collaborative filtering.



HDFS
Key Techniques
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Recap: HDFS Read

Client NN

X

Y2Y2Y1

2

4

5

HDFS Client DFS

InputFormat

3
6

1

1. Open
2. Get Block Locations
3. Read
4. Read
5. Read
6. Close



MapReduce – Programming Mode

Overview

● MapReduce is a programming model for processing large 
datasets in parallel, distributed across multiple nodes.

● Developed by Google; popularized by Apache Hadoop.

Processes and 
transforms input 

data into 
intermediate 

key-value pairs.
Map

Map

Aggregates 
intermediate data 
to produce the 
final result.

Map

Reduce

Map ReduceShuffle

Input
Data

Output



MapReduce I

Why MapReduce?

● Handles large-scale data processing efficiently.

● Works on commodity hardware.

● Built-in fault tolerance.

● Suitable for structured, semi-structured, and 

unstructured data.



MapReduce II

Key Concepts

● Distributed Processing: Data is split across multiple 

nodes for parallel execution.

● Key-Value Pairs: Core data structure in MapReduce.



MapReduce III: Pipeline
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MapReduce III: Pipeline
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MapReduce III: Pipeline
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MapReduce III: Pipeline
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MapReduce III: Pipeline
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MapReduce III: Pipeline
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MapReduce IV

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]
]
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https://dl.acm.org/doi/abs/10.1145/1327452.1327492
https://dl.acm.org/doi/abs/10.1145/1327452.1327492


MapReduce IV
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MapReduce IV
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MapReduce IV
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MapReduce VI: Hands on Lab

Servers Log

● Use the MapReduce programming model to:

○ Count how many times each page was accessed.

○ Identify the most popular page.

● Calculate the Average Using MapReduce

○ Given a list [4, 8, 15, 16, 23, 42], compute the average 

using MapReduce.



MapReduce: Summary (Pros)
● Large-scale processing. Large amounts of data distributed across multiple nodes in a cluster.

● Fault-tolerant. If a node fails, the system can recover and reassign tasks to other nodes.

● User Defined Functions and files. Developers can define their own custom processing logic 

through UDFs, and the model relies on files to store intermediate and final results.

● Flexibility. Developers can customize processing logic while the system manages distribution 

and fault recovery automatically.

● Restricted functional APIs. MapReduce relies on a limited set of functional primitives:

○ Map: Transforms input data into key-value pairs.

○ Reduce: Aggregates values associated with the same keys to produce results.

● Implicit parallelism. Developers only need to implement the Map and Reduce functions; the 

distribution of workload across nodes relies on the system.



MapReduce: Summary (Cons)
● Performance: its performance can suffer in complex workloads 

due to heavy reliance on I/O (writing and reading intermediate 

data to/from disk).

● Low-level APIs: The API is relatively basic, requiring a lot of 

manual effort to implement more sophisticated workflows.

● Many different systems: Specialized systems (e.g., Apache 

Spark, Apache Flink, or distributed database systems) have 

emerged as alternatives, often being more efficient and 

user-friendly.



Spark History and Architecture
Evolution to Spark (and Flink)

● Spark [HotCloud’10] + Resilent Distributed Data Sets (RDDs) [NSDI’12] → Apache 
Spark (2014)

● Design 1: Standing executors with in-memory storage: 
○ Spark keeps long-running worker processes (executors) active, enabling tasks 

to run faster by avoiding repeated setup costs.
○ Data is stored in memory whenever possible, minimizing disk I/O for iterative 

and interactive jobs.
● Design 2: Lazy evaluation:

○ Directed Acyclic Graph of transformations rather than executing them 
immediately.

○ Actions (e.g., collect, save, count) trigger DAG’s execution, allowing 
workflow optimization by reordering and combining operations.



Spark History and Architecture
● Design 3: Fault tolerance via RDD lineage

○ Data partition lost -> Spark can recompute using lineage graph of 

transformations applied to the data (reliability without heavy replication).

● Performance:

○ In-memory storage. By keeping intermediate data in memory, 

Spark significantly reduces disk I/O (faster for iterative 

tasks e.g machine learning).

○ Fast job scheduling. Spark’s scheduler operates with low 

overhead, enabling tasks to be scheduled in milliseconds 

(~100ms), compared to Hadoop’s ~10 seconds per job.



Spark History and Architecture
● APIs:

○ Richer functional APIs. Wide range of functional operators 

(e.g., map, reduce, filter, groupByKey, flatMap) compared 

to Hadoop -> easier to write complex workflows.

○ General computation DAGs. Unlike MapReduce, which forces 

jobs into two rigid phases (map and reduce), Spark supports 

general DAGs for more flexible computation flows.

○ High-level APIs (DataFrame/Dataset). DataFrames and 

Datasets offer high-level abstractions that simplify 

working with structured data and enable query optimization.



Spark History and Architecture
● Unified Platform. Multiple workloads into a single 

platform:

○ Batch processing (similar to MapReduce)

○ Streaming (real-time data)

○ Machine learning (MLlib)

○ Graph processing (GraphX)

○ SQL queries (Spark SQL)



Spark Functionality: Core components
Resilient Distributed Datasets (RDDs): 

● Distributed collections of objects (foundation for fault tolerance and 
parallelism.)

DataFrames and Datasets:

● Higher-level abstractions for structured and semi-structured data (Optimized via 
Spark's Catalyst engine).

Spark SQL:

● Query structured data using SQL.

MLlib:

● Machine learning library for scalable algorithms.

GraphX:

● Graph processing library.



Spark Functionality: Architecture

Driver Program:

● Defines the application and coordinates tasks.

Cluster Manager:

● Allocates resources (YARN, Mesos, Kubernetes).

Executors:

● Workers that execute tasks and store data partitions.

DAGs:

● Spark builds a logical execution plan before running tasks.



Spark Functionality: Workflow

● Create RDD/DataFrame: Load data into Spark from HDFS, 

S3, or other sources.

● Transformations: Apply operations (e.g., map, filter, 

groupBy).

● Actions: Trigger execution (e.g., collect, save).

● Execution: (a) Splits tasks across nodes, (b) Uses DAG 

to optimize execution.



Spark: Hands on Lab

Servers Log

● Use the COLAB to simulate Spark basic operations

● Let’s take a look into Databricks…



Data-Parallel DataFrame Operations



Origins of DataFrames
Recap: Data Preparation Problem

● 80% Argument:  80-90% time for finding, 
integrating, cleaning data

● Data scientists prefer scripting languages and 
in-memory libraries

Python DataFrames:  

● Python pandas DataFrame for seamless data 
manipulations (most popular packages/features)

● DataFrame: table with a schema
● Descriptive stats and basic math, 

reorganization, joins, grouping, windowing
● Limitation: Only in-memory, single-node 

operations

import pandas as pd

df = pd.read_csv(‘data/tmp1.csv’, 
index_col=2)

df.head()

df = pd.concat(df, df[[‘A’,’C’]], axis=0) 



Spark DataFrames and DataSets
Overview Spark DataFrame

● DataFrame is distributed collection of rows with named/typed columns

● Relational operations (e.g., projection, selection, joins, grouping, aggregation)

● DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

DataFrame and Dataset APIs

● DataFrame was introduced as basis for Spark SQL

● DataSets allow more customization and compile-time analysis errors (Spark 2)

DataFrame and Dataset APIs

logs = spark.read.format("json").open("s3://logs")

logs.groupBy(logs.user_id).agg(sum(logs.time))

.write.format("jdbc").save("jdbc:mysql//...")



SparkSQL and DataFrame/Dataset
Overview SparkSQL

● Shark (~2013): academic prototype for SQL on Spark

● SparkSQL (~2015): reimplementation from scratch

● Common IR and compilation of SQL and DataFrame operations

Catalyst: Query Planning



SparkSQL and DataFrame/Dataset
Performance features

1. Whole-stage code generation via Janino

2. Off-heap memory (sun.misc.Unsafe) for caching and certain operations

3. Pushdown of selection, projection, joins into data sources (+ join ordering)



DASK
Overview Dask

● Multi-threaded and distributed operations for arrays, bags, and dataframes

● dask.array: list of numpy n-dim arrays

● dask.dataframe: list of pandas data frames

● dask.bag:unordered list of tuples (second order functions)

● Local and distributed schedulers: threads, processes, YARN, Kubernetes, containers, 

HPC, and cloud, GPUs

Execution

● Lazy evaluation

● Limitation: requires static size inference

● Triggered via compute()

import dask.array as da 
x = da.random.random( (10000,10000), 
chunks=(1000,1000)) 
y = x + x.T 
y.persist() # cache in memory 
z = y[::2, 5000:].mean(axis=1) #colMeans ret 
= z.compute() # returns NumPy array



Summary and Q&A



Summary and Q&A

 

● Summary and Q&A

○ Motivation and Terminology

○ Data-Parallel Collection Processing

○ Data-Parallel DataFrame Operations

● Next Lectures

○ Distributed Stream Processing [Jan 10]



Vielen Dank!


