
Data Integration and Large
Scale Analysis

10- Distributed Data-Parallel Computation
Lucas Iacono. PhD. - 2024

Slides credit: Matthias Boehm - Shafaq Siddiqi

Part B
Large-Scale Data

Management & Analysis

● LU3. Cloud Computing
○ Cloud Computing Fundamentals

[Nov 29]
○ Cloud Resource Management and

Scheduling [Dec 06]
○ Distributed Data Storage[Dec 13]

Part B
Large-Scale Data

Management & Analysis

● LU4. Large-Scale Data
Analysis

○ Distributed, Data-Parallel
Computation [Dec 20]

○ Distributed Stream Processing
[Jan 10]

○ Distributed Machine Learning
Systems [Jan 17]

Agenda ● Announcements
● Data-Parallel Collection & Processing
● Data-Parallel DataFrame Operations

Announcements

Announcements

Course Evaluation and Exam

● Course evaluation: 20/02/2025
● Exam date: Feb 07, 3:00pm (90 min written exam)
● Oral Exam for Erasmus Students

○ Schedule available in TeachCenter (23/12/2024)

Motivation and Terminology

Motivation and Terminology

Recap: Distributed Collections

Logical multi-set (bag) of key-value pairs (unsorted
collection)

Different physical representations key-value pairs can be
stored in various ways (e.g., database, across files, or in
memory).

Easy Distribution via Horizontal Partitioning. Data divided
into "chunks" (shards or partitions) based on the keys. Each
chunk stored on a different machine (easier to handle
large-scale data).

How collections are created: from single file with data or a
folder of files (even if they’re messy and unsorted).

Key Value

13:00:01 12.1

14:00:05 16.0

13:00:03 12.5

13:00:05 13.0

14:00:04 15.7

14:00:06 16.3

13:00:00 12.1

Motivation and Terminology

Recap: Files and Objects

File: large and continuous block of data saved in a specific
format (CSV, Binary, etc.).

Object: like a file, but binary and it comes with metadata
(Images on S3)

Motivation and Terminology

Recap: Object Storage

1. Object Storage (e.g. AWS S3):
a. Data stored as objects (data, metadata, and UID).
b. Ideal for storing unstructured data like media files,

backups, or large datasets.
c. Objects of a limited size (e.g., 5TB in AWS S3).

Motivation and Terminology

Nehalem Architecture

● Integrated Memory Controller: Integrated in chip, -- latency and ++

memory performance.

● Support for DDR3 Memory: Higher memory bandwidth (compared to DDR2).

● QuickPath Interconnect (QPI): High-speed, point-to-point connection (no

Front-Side Bus).

● Enhanced Hyper-Threading: Each core supports two threads (+++

performance)

● Multi-Core Scalability: 2 to 8 cores per processor (2 threads / core)

● Improved Cache Design: Dedicated L1 and L2 cache p/core shared L3 cache

Michael E.
Thomadakis:
The Architecture of
the
Nehalem Processor
and NehalemEP SMP
Platforms, Report,
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730

Motivation and Terminology

Nehalem Architecture

● Energy Efficiency: Turbo Boost for dynamic clock speed adjustments.
● Advanced Manufacturing Process: Higher transistor density and better

efficiency.
● Integrated Graphics (in later models): Some models included integrated

GPUs.
● Foundation for Modern Architectures: Established the groundwork for

subsequent Intel architectures like Sandy Bridge and Skylake. Michael E.
Thomadakis:
The Architecture of
the
Nehalem Processor
and NehalemEP SMP
Platforms, Report,
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730

Motivation and Terminology

Nehalem Architecture

● Pipeline
○ Frontend:

■ Instruction Fetch
■ Pre-Decode
■ Decode CISC 2 uOps (ADD [eax], 5)

● Load the value from memory.
● Add 5 to the loaded value.
● Store the result back to memory.

○ Backend:
■ Rename/Allocate
■ Scheduler
■ Execute

Michael E.
Thomadakis:
The Architecture of
the
Nehalem Processor
and NehalemEP SMP
Platforms, Report,
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730

Motivation and Terminology

Nehalem Architecture

● Out-of-Order

○ Instructions are not necessarily executed in the

order they appear in the program

● Execution Engine: 4 Inst x Cycle (IPC=4)

● 128-bits Floating-point multiplication

● 128-bits floating-point addition

Michael E.
Thomadakis:
The Architecture of
the
Nehalem Processor
and NehalemEP SMP
Platforms, Report,
2010

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730

Motivation and Terminology

Flynn’s Classification
Computer architectures based on how they handle instructions
and data.

● SISD:
○ One task at time - one data chunk (e.g. PC running a

single program)
● SIMD:

○ One task at time - multiple data chunks (e.g. GPUs
rendering)

● MISD:
○ Multiple tasks - one data chunk (e.g. fault-tolerant

computers)
● MIMD:

○ Multiple tasks - multiple data chunks (multi-core
CPUs 1 Core -> Program)

Single Data Multiple Data

Single
Instruction

Multiple
Instruction

SISD
(uni-core)

SIMD
(vector)

MISD
(pipeline)

MIMD
(multi-core)

Michael J. Flynn, Kevin W.
Rudd: Parallel
Architectures.
ACM Comput. Surv. 28(1)
1996

https://dl.acm.org/doi/pdf/10.1145/234313.234345
https://dl.acm.org/doi/pdf/10.1145/234313.234345

Motivation and Terminology

Distributed, Data-Parallel Computation

● Parallel computation of function foo() ➔ single instruction

○ A single function applied to all data items in parallel.

● Collection X of data items (key-value pairs) ➔ multiple data

○ foo() operates on multiple pieces of data (key-value

pairs).

● Data parallelism similar to SIMD but more coarse-grained notion

of “instruction” and “data” ➔ SPMD (single program, multiple

data)

Y = X.map(X -> foo(x)) X = Data Items (e.g. array), .map (operation

to each element in X), Y = Output
[Frederica Darema:
The SPMD Model :
Past,
Present and Future.
PVM/MPI 2001]

https://link.springer.com/chapter/10.1007/3-540-45417-9_1
https://link.springer.com/chapter/10.1007/3-540-45417-9_1

Motivation and Terminology

SPMD

● Dynamic Work Assignment. Processes can self-schedule, ++

flexibility & efficiency.

● More General than SIMD. SPMD allows different instruction

streams for different data. It can handle more complex tasks.

● Efficient Control. Performed at the application level rather

than the OS level (less costly and more efficient than F&J.

● Applications:

○ MPI (Message Passing Interface)

○ PVM (Parallel Virtual Machine)

○ Grid Computing

[Frederica Darema:
The SPMD Model :
Past,
Present and Future.
PVM/MPI 2001]

https://link.springer.com/chapter/10.1007/3-540-45417-9_1
https://link.springer.com/chapter/10.1007/3-540-45417-9_1

Motivation and Terminology
Model Key Features Pros Cons

BSP (Bulk
Synchronous)

Global barriers
enable
synchronization
after each phase

+++ Correctness and
consistency; simple
to implement

Overhead due to waiting at barriers
Slow for stragglers

ASP (Asynchronous
Parallel)

Processes run
independently

Faster execution (no
waiting)

Accuracy issues from outdated data

SSP
(Stale-Synchronous
Parallel)

Controlled staleness
allows fastest
processes to proceed
within a limit

Balances efficiency
and consistency;
reduces waiting time
compared to BSP

Small inaccuracies

Data-Parallel Collection & Processing

Hadoop

Brief Hadoop History

● Google’s GFS + MapReduce [ODSI’04] -> Apache Hadoop
(2006).

● Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

● Management (Ambari)
● Coordination / workflows (Zookeeper, Oozie)
● Storage (HDFS)
● Resources (YARN)

Hadoop

Hadoop Ecosytem

● Apache Hive (SQL)
○ What it is:

■ Data warehouse infrastructure built on top of Hadoop.
■ Allows you to query and analyze large datasets stored in Hadoop

using a SQL-like language called HiveQL.
○ Main Purpose:

■ Querying and analysis of big data using familiar SQL syntax.
■ Suitable for batch processing and data summarization.

○ Use Case:
■ Running SQL queries to analyze log data or generate business

reports.

Hadoop

Hadoop Ecosytem

● Apache Pig (ETL)
○ What it is:

■ High-level platform for creating data processing programs in
Hadoop.

■ Pig language to simplifies the MapReduce jobs writing process.
○ Main Purpose:

■ ETL operations. Cleaning, transforming, and preparing large
datasets for analysis.

○ Use Case:
■ Processing raw web logs into structured formats for further

analysis.

Hadoop

Hadoop Ecosytem

● Apache Mahout (ML)
○ What it is:

■ A library for building scalable machine learning algorithms on
top of Hadoop.

■ Focused on distributed or scalable implementations of common ML
algorithms.

○ Main Purpose:
■ Implementing machine learning algorithms like clustering,

classification, and recommendation systems on large datasets.
○ Use Case:

■ Building a recommendation system for an e-commerce platform using
collaborative filtering.

HDFS
Key Techniques

D
D1

D2

D3

D11

D22

D32

D12

D21

D31

D11

D12

D21 D32

D22 D31Partitioning
& Parity

Replication

Distribution

Partitioning

Erasure
Coding

Recap: HDFS Read

Client NN

X

Y2Y2Y1

2

4

5

HDFS Client DFS

InputFormat

3
6

1

1. Open
2. Get Block Locations
3. Read
4. Read
5. Read
6. Close

MapReduce – Programming Mode

Overview

● MapReduce is a programming model for processing large
datasets in parallel, distributed across multiple nodes.

● Developed by Google; popularized by Apache Hadoop.

Processes and
transforms input

data into
intermediate

key-value pairs.
Map

Map

Aggregates
intermediate data
to produce the
final result.

Map

Reduce

Map ReduceShuffle

Input
Data

Output

MapReduce I

Why MapReduce?

● Handles large-scale data processing efficiently.

● Works on commodity hardware.

● Built-in fault tolerance.

● Suitable for structured, semi-structured, and

unstructured data.

MapReduce II

Key Concepts

● Distributed Processing: Data is split across multiple

nodes for parallel execution.

● Key-Value Pairs: Core data structure in MapReduce.

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

HDFS

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

DataNode

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

Key-Value

Key

Key

Key

Key

Key

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

Key-Value

Key

Key

Key

Key

Key

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

Key

Key

Key

Key

Key

MapReduce III: Pipeline

Input
Data

MapperSplit

Split

Split

Split

Split

Mapper

Mapper

Mapper

Mapper

Sh
uf
fl
e

Reducer

Reducer

.CSV
-,-,-
-,-,-
-,-,-

Key

Key

Key

Key

Key

Idempotent

MapReduce IV

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]
]

This is an
apple

apple is
red in
color

This - 1
is - 1
an - 1

apple - 1This is
an

apple

apple
is red
in

color

apple -
1

is - 1
red - 1
in - 1
color -

1

https://dl.acm.org/doi/abs/10.1145/1327452.1327492
https://dl.acm.org/doi/abs/10.1145/1327452.1327492

MapReduce IV

This is an
apple

apple is
red in
color

This - 1
is - 1
an - 1

apple - 1This is
an

apple

apple
is red
in

color

apple -
1

is - 1
red - 1
in - 1
color -

1

This -1

is -1
is - 1

an -1

apple - 1
apple - 1

red -1

in -1

color -1

MapReduce IV

This is an
apple

apple is
red in
color

This - 1
is - 1
an - 1

apple - 1This is
an

apple

apple
is red
in

color

apple -
1

is - 1
red - 1
in - 1
color -

1

This -1

is -1
is - 1

an -1

apple - 1
apple - 1

red -1

in -1

color -1

This - 1

is - 2

an -1

apple - 2

red - 1

in - 1

color - 1

This - 1

MapReduce IV

This is an
apple

apple is
red in
color

This - 1
is - 1
an - 1

apple - 1This is
an

apple

apple
is red
in

color

apple -
1

is - 1
red - 1
in - 1
color -

1

This -1

is -1
is - 1

an -1

apple - 1
apple - 1

red -1

in -1

color -1

This - 1

is - 2

an -1

apple - 2

red - 1

in - 1

color - 1

This - 1
is - 2
an - 1
apple - 2
red - 1
in - 1
color - 1

MapReduce VI: Hands on Lab

Servers Log

● Use the MapReduce programming model to:

○ Count how many times each page was accessed.

○ Identify the most popular page.

● Calculate the Average Using MapReduce

○ Given a list [4, 8, 15, 16, 23, 42], compute the average

using MapReduce.

MapReduce: Summary (Pros)
● Large-scale processing. Large amounts of data distributed across multiple nodes in a cluster.

● Fault-tolerant. If a node fails, the system can recover and reassign tasks to other nodes.

● User Defined Functions and files. Developers can define their own custom processing logic

through UDFs, and the model relies on files to store intermediate and final results.

● Flexibility. Developers can customize processing logic while the system manages distribution

and fault recovery automatically.

● Restricted functional APIs. MapReduce relies on a limited set of functional primitives:

○ Map: Transforms input data into key-value pairs.

○ Reduce: Aggregates values associated with the same keys to produce results.

● Implicit parallelism. Developers only need to implement the Map and Reduce functions; the

distribution of workload across nodes relies on the system.

MapReduce: Summary (Cons)
● Performance: its performance can suffer in complex workloads

due to heavy reliance on I/O (writing and reading intermediate

data to/from disk).

● Low-level APIs: The API is relatively basic, requiring a lot of

manual effort to implement more sophisticated workflows.

● Many different systems: Specialized systems (e.g., Apache

Spark, Apache Flink, or distributed database systems) have

emerged as alternatives, often being more efficient and

user-friendly.

Spark History and Architecture
Evolution to Spark (and Flink)

● Spark [HotCloud’10] + Resilent Distributed Data Sets (RDDs) [NSDI’12] → Apache
Spark (2014)

● Design 1: Standing executors with in-memory storage:
○ Spark keeps long-running worker processes (executors) active, enabling tasks

to run faster by avoiding repeated setup costs.
○ Data is stored in memory whenever possible, minimizing disk I/O for iterative

and interactive jobs.
● Design 2: Lazy evaluation:

○ Directed Acyclic Graph of transformations rather than executing them
immediately.

○ Actions (e.g., collect, save, count) trigger DAG’s execution, allowing
workflow optimization by reordering and combining operations.

Spark History and Architecture
● Design 3: Fault tolerance via RDD lineage

○ Data partition lost -> Spark can recompute using lineage graph of

transformations applied to the data (reliability without heavy replication).

● Performance:

○ In-memory storage. By keeping intermediate data in memory,

Spark significantly reduces disk I/O (faster for iterative

tasks e.g machine learning).

○ Fast job scheduling. Spark’s scheduler operates with low

overhead, enabling tasks to be scheduled in milliseconds

(~100ms), compared to Hadoop’s ~10 seconds per job.

Spark History and Architecture
● APIs:

○ Richer functional APIs. Wide range of functional operators

(e.g., map, reduce, filter, groupByKey, flatMap) compared

to Hadoop -> easier to write complex workflows.

○ General computation DAGs. Unlike MapReduce, which forces

jobs into two rigid phases (map and reduce), Spark supports

general DAGs for more flexible computation flows.

○ High-level APIs (DataFrame/Dataset). DataFrames and

Datasets offer high-level abstractions that simplify

working with structured data and enable query optimization.

Spark History and Architecture
● Unified Platform. Multiple workloads into a single

platform:

○ Batch processing (similar to MapReduce)

○ Streaming (real-time data)

○ Machine learning (MLlib)

○ Graph processing (GraphX)

○ SQL queries (Spark SQL)

Spark Functionality: Core components
Resilient Distributed Datasets (RDDs):

● Distributed collections of objects (foundation for fault tolerance and
parallelism.)

DataFrames and Datasets:

● Higher-level abstractions for structured and semi-structured data (Optimized via
Spark's Catalyst engine).

Spark SQL:

● Query structured data using SQL.

MLlib:

● Machine learning library for scalable algorithms.

GraphX:

● Graph processing library.

Spark Functionality: Architecture

Driver Program:

● Defines the application and coordinates tasks.

Cluster Manager:

● Allocates resources (YARN, Mesos, Kubernetes).

Executors:

● Workers that execute tasks and store data partitions.

DAGs:

● Spark builds a logical execution plan before running tasks.

Spark Functionality: Workflow

● Create RDD/DataFrame: Load data into Spark from HDFS,

S3, or other sources.

● Transformations: Apply operations (e.g., map, filter,

groupBy).

● Actions: Trigger execution (e.g., collect, save).

● Execution: (a) Splits tasks across nodes, (b) Uses DAG

to optimize execution.

Spark: Hands on Lab

Servers Log

● Use the COLAB to simulate Spark basic operations

● Let’s take a look into Databricks…

Data-Parallel DataFrame Operations

Origins of DataFrames
Recap: Data Preparation Problem

● 80% Argument: 80-90% time for finding,
integrating, cleaning data

● Data scientists prefer scripting languages and
in-memory libraries

Python DataFrames:

● Python pandas DataFrame for seamless data
manipulations (most popular packages/features)

● DataFrame: table with a schema
● Descriptive stats and basic math,

reorganization, joins, grouping, windowing
● Limitation: Only in-memory, single-node

operations

import pandas as pd

df = pd.read_csv(‘data/tmp1.csv’,
index_col=2)

df.head()

df = pd.concat(df, df[[‘A’,’C’]], axis=0)

Spark DataFrames and DataSets
Overview Spark DataFrame

● DataFrame is distributed collection of rows with named/typed columns

● Relational operations (e.g., projection, selection, joins, grouping, aggregation)

● DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

DataFrame and Dataset APIs

● DataFrame was introduced as basis for Spark SQL

● DataSets allow more customization and compile-time analysis errors (Spark 2)

DataFrame and Dataset APIs

logs = spark.read.format("json").open("s3://logs")

logs.groupBy(logs.user_id).agg(sum(logs.time))

.write.format("jdbc").save("jdbc:mysql//...")

SparkSQL and DataFrame/Dataset
Overview SparkSQL

● Shark (~2013): academic prototype for SQL on Spark

● SparkSQL (~2015): reimplementation from scratch

● Common IR and compilation of SQL and DataFrame operations

Catalyst: Query Planning

SparkSQL and DataFrame/Dataset
Performance features

1. Whole-stage code generation via Janino

2. Off-heap memory (sun.misc.Unsafe) for caching and certain operations

3. Pushdown of selection, projection, joins into data sources (+ join ordering)

DASK
Overview Dask

● Multi-threaded and distributed operations for arrays, bags, and dataframes

● dask.array: list of numpy n-dim arrays

● dask.dataframe: list of pandas data frames

● dask.bag:unordered list of tuples (second order functions)

● Local and distributed schedulers: threads, processes, YARN, Kubernetes, containers,

HPC, and cloud, GPUs

Execution

● Lazy evaluation

● Limitation: requires static size inference

● Triggered via compute()

import dask.array as da
x = da.random.random((10000,10000),
chunks=(1000,1000))
y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) #colMeans ret
= z.compute() # returns NumPy array

Summary and Q&A

Summary and Q&A

● Summary and Q&A

○ Motivation and Terminology

○ Data-Parallel Collection Processing

○ Data-Parallel DataFrame Operations

● Next Lectures

○ Distributed Stream Processing [Jan 10]

Vielen Dank!

