
Data Integration and Large
Scale Analysis

08- Cloud Computing Fundamentals
Lucas Iacono. PhD. - 2024

Slides credit: Matthias Boehm - Shafaq Siddiqi

Part B
Large-Scale Data

Management & Analysis

● LU3. Cloud Computing
○ Cloud Computing Fundamentals

[Nov 29]
○ Cloud Resource Management and

Scheduling [Dec 06]
○ Distributed Data Storage[Dec 13]

Part B
Large-Scale Data

Management & Analysis

● LU4. Large-Scale Data
Analysis

○ Distributed, Data-Parallel
Computation [Jan 10]

○ Distributed Stream Processing
[Jan 17]

○ Distributed Machine Learning
Systems [Jan 24]

Agenda
● Motivation and

Terminology
● Cloud Computing Service

Models
● Cloud, Fog, and Edge

Computing

Motivation and Terminology

Motivation and Terminology

● How new it is?

Motivation and Terminology

80s

CompuServe starts offering small-scale
cloud-like storage

Tim Berners-Lee invents the World Wide Web

90s

Salesforce launches its CRM SaaS platform

60s

John McCarthy conceptualize the idea of computing as a
public utility at a lecture at MIT, envisioning "computing on
demand."

ARPANET is developed, enabling computational resources
sharing over a network.

70s

IBM launches CP/CMS (Control Program/Cambridge Monitor
System), an early virtualization system that allows multiple
users to run applications on a single mainframe.

Distributed computing concept emerges, focusing on resource
sharing across multiple machines (cluster computing).

AWS presents EC2 and S3

Motivation and Terminology

● Definition
○ “A Cloud is a type of parallel and distributed system consisting of a

collection of interconnected and virtualized computers that are
dynamically provisioned and presented as one or more unified
computing resource(s) based on service-level agreements established
through negotiation between the service provider and consumers” [*].

Buyya, R., Yeo, C. S., Venugopal, S.,
Broberg, J., & Brandic, I. (2009). Cloud
computing and emerging IT platforms:
Vision, hype, and reality for delivering
computing as the 5th utility. Future
Generation computer systems, 25(6),
599-616.

https://www.sciencedirect.com/science/article/pii/S0167739X08001957
https://www.sciencedirect.com/science/article/pii/S0167739X08001957

Motivation and Terminology

● Cloud Model

SaaS
Docs, Email, Games, etc.

PaaS
APIs, SDKs, and more

IaaS
VMs, Storage, Network

Motivation and Terminology

● Transforming IT Industry/Landscape
○ Since ~2010 increasing move from on-prem to cloud resources
○ System software licenses become increasingly irrelevant
○ Few cloud providers dominate IaaS/PaaS/SaaS markets
○ 2023 revenue:

■ Microsoft ($ 111.6B)
■ Amazon AWS ($ 88B)
■ Oracle Cloud ($ 35.3B)
■ IBM Cloud ($ 20.8B)
■ Google Cloud (8.41B)
■ Alibaba Cloud ($ 3.789M)

Motivation and Terminology

● Argument #1: Pay as you go:
○ No upfront cost for infrastructure
○ Variable utilization ➔ over-provisioning
○ Pay per use or acquired resources

● Argument #2: Economies of Scale
○ Lower cost for purchasing and managing IT infrastructure at scale ➔ lower

cost (applies to both HW resources and IT infrastructure/system experts)
○ Focus on scale-out on commodity HW over scale-up ➔ lower cost

● Argument #3: Elasticity
○ System can scale up according to demand
○ Virtually unlimited resources allows to reduce time as necessary ((Task time =

Time x Resources))
● Argument #4: Availability

○ Resources are available 24x7

Characteristics and Deployment Models
● Characteristics

On-demand self service. Users can access and manage computing
resources themselves without requiring human assistance.

Broad network access. Services are accessible from anywhere with an
internet connection, using various devices.

Resource pooling. Computing resources are shared among multiple
users through virtualization, securely and efficiently

Rapid elasticity. Resources can be scaled up or down quickly based
on demand, in real time.

Measured service. Resource usage is monitored and recorded to
optimize consumption and bill only for what you use.

Cloud Computing Service Models

(computing as a utility)

Anatomy of a Data Center

CPUs Servers (Sockets, RAM, Disks)

Rack
(16-64 servers + rack switch)

Cluster
(++Racks + Cluster switch)

Data center (Google Netherlands)

Fault Tolerance

● Yearly Data Center Failures
○ ~0.5 overheating (power down most machines in <5 mins, ~1-2 days)
○ ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)
○ ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6

hrs)
○ ~1 network rewiring (rolling ~5% of machines down over 2-day span)
○ ~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)
○ ~5 racks go wonky (40-80 machines see 50% packet loss)
○ ~8 network maintenances (~30-minute random connectivity losses)
○ ~12 router reloads (takes out DNS and external vIPs for a couple

minutes)
○ ~3 router failures (traffic rerouting, ~ 1 hour to stabilize.)
○ ~dozens of minor 30-second DNS issues
○ ~1000 individual machine failures (2-4% failure rate, at least twice)
○ ~thousands of hard drive failures (1-5% of all disks will die)

Fault Tolerance

● Other Common Issues
○ Configuration issues, partial SW updates, SW bugs.
○ Transient errors: no space left on device, memory corruption,

stragglers.
● Recap: Error Rates at Scale

○ Cost-effective commodity hardware.
○ Error rate increases with increasing scale.
○ Fault Tolerance for distributed/cloud storage and data analysis.

Failures are inevitable. large-scale systems are designed with fault tolerance to
ensure they can detect, recover from, and mitigate the impact of errors, ensuring
reliability and minimal downtime.

Fault Tolerance

Cost-effective Fault Tolerance

● BASE:

○ BAsically available: system mostly operational even during failures,
providing partial functionality if necessary.

○ Soft state: state of the system may change over time, even without
new input, due to replication or recovery processes.

○ Eventual consistency: data may not be instantly consistent across
all nodes but will eventually synchronize to the correct state

Fault Tolerance

Cost-effective Fault Tolerance

● Data corruption prevention
○ ECC (error correction codes)
○ CRC (cyclic redundancy check)

● Resilient storage
○ Replication (multiple data copies stored across nodes)
○ Erasure coding (data fragmentation + redundancy)
○ Checkpointing (save application state)
○ Lineage (data origin + dependencies)
○ Resilient compute: task re-execution / speculative execution

Virtualization I

● Native Virtualization
○ Simulates most of the HW interface
○ Unmodified guest OS to run as if it were on real HW
○ Examples: VMWare, Virtualbox, AMI (HVM)

● Advantages
○ Guess OS as it is!
○ High compatibility
○ High security

VM VMVM VM

Hypervisor

Hardware

VM VMVM VM

Hypervisor

OS

Hardware

Virtualization II

● Para-virtualization
○ No HW interface simulation, but special API (hypercalls)

replacing hardware instructions.
○ Requires modified guest OS to use hyper calls, trapped by

hypervisor
○ Examples: Xen, KVM, Hyper-V, AMI (PV)

● Advantages
○ Faster and more efficient than native virtualization (skips

the overhead of hardware simulation).
○ Ideal for environments where performance is critical, and

modifying the OS is acceptable.

Virtualization III

● OS-level Virtualization
○ Allows multiple isolated environments (virtual servers or

containers) to run on the OS.
○ Guest OS appears isolated but same as host OS
○ Examples: Solaris/Linux containers, Docker

● Application-level Virtualization
○ App executed within a virtualized runtime environment that

abstracts away dependencies on the host system.
○ Examples: Java VM (JVM), Ethereum VM (EVM), Python

virtualenv

In brief

Topic Native Virtualization Para Virtualization OS-level Virtualization Application-level Virtualization

Definition Simulates hardware fully Uses hypercalls, no HW

emulation

Containers sharing host

OS

Virtualizes specific applications

Guest OS Unmodified Modified Same as host OS NA

Performance Moderate (HW

overhead)

High Very high High

Examples VMware, Parallels Xen, KVM Docker, Linux Containers JVM, Python virtualenv

Use Case Mixed OS environments High-performance VMs Cloud-native apps App portability across platforms

BONUS: Containerization

● Docker Containers
○ Shipping container analogy

■ Arbitrary, self-contained goods, standardized
units

■ Containers reduced loading times ➔ efficient
international trade

○ Self-contained package of necessary SW and data
(read-only image)

○ Lightweight virtualization w/ shared OS and resource
isolation via control groups

BONUS: Containerization

● Cluster Schedulers
○ Container orchestration: scheduling, deployment, and

management
○ Resource negotiation with clients
○ Typical resource bundles (CPU, memory, device)
○ Examples: Kubernetes, Mesos, (YARN), Amazon ECS,

Microsoft ACS, Docker Swarm

How far can we go?

● Snowmobile Service: Data transfer on-premise → cloud
via 100PB trucks w/ 1Gb link

https://aws.amazon.com/en/snowball/
https://aws.amazon.com/en/snowball/

How far can we go?

Microsoft Underwater Datacenter

http://www.youtube.com/watch?v=lBeepqQBpvU

Cloud vs other HPC Technologies

Computing Techniques Features

Cloud Computing Cost efficient, almost unlimited storage, backup and recovery, easy
deployment

Grid Computing Efficient use of idle resources, modular, parallelism can be achieved,
handles complexity

Cluster Computing Reduced cost, processing power, improved network technology,
scalability, availability

Manvi, S. S., & Shyam, G. K. (2014).
Resource management for Infrastructure
as a Service (IaaS) in cloud computing:
A survey. Journal of network and
computer applications, 41, 424-440.

https://www.sciencedirect.com/science/article/pii/S1084804513002099
https://www.sciencedirect.com/science/article/pii/S1084804513002099

Cloud Computing Service Models

SaaS
Docs, Email, Games, etc.

PaaS
APIs, SDKs, and more

IaaS
VMs, Storage, Network

IaaS
Combination of hosting, hardware provisioning, basic services, and other services
needed to run a cloud.

Uses of IaaS:

● Provides access to shared resources on need basis, without revealing details like
location and hardware to clients.

● Provides details like server images on demand, storage, queuing, and information
about other resources.

● Offers full control of server infrastructure, not limited specifically to
applications, instances and containers.

Major issues associated with IaaS:

● Resource management.
● Internet access.
● Virtualization.
● Data management.
● APIs.
● Interoperability.

IaaS
VMs, Storage, Network

PaaS
Provision of a computing platform and the provision and deployment of the associated
set of software applications (called a solution stack).

Uses of PaaS:

● Provides developers with tools, frameworks, and runtime environments to build and
deploy applications efficiently.

● Removes the need to worry about hardware, operating systems, or server management.
● While IaaS provides control over server infrastructure, PaaS limits control to

what’s essential for applications, offering an environment tuned specifically for
application development and management.

Major issues associated with PaaS:

● Provider reliability
● Resource management
● Internet dependency
● Performance
● Scalability costs

PaaS
APIs, SDKs, and more

SaaS
Software as a Service is a software distribution model in which applications are hosted
by a vendor or service provider and made available to customers over a network.

Uses of SaaS:

● On-demand software access.
● Scalability
● Cost-effective solution
● Cross device availability
● Collaboration and real-time updates

Major issues associated with SaaS:

● Internet dependency
● Performance
● Long-term cost
● Data Security and Privacy

SaaS
Docs, Email, Games, etc.

Other “layers”: Serverless Computing
A cloud computing paradigm where developers can build and run applications without
managing server infrastructure. Operational responsibilities like fault tolerance,
scaling, and resource allocation are handled by cloud providers.

Uses of SaaS:

● Function-as-a-Service (FaaS): Runs stateless, event-driven functions in response
to triggers.

● Serverless Databases: Auto-scale capacity as needed and hibernate during periods
of inactivity, reducing costs while maintaining availability.

Kounev, S., Herbst, N., Abad, C. L.,
Iosup, A., Foster, I., Shenoy, P., ... &
Chien, A. A. (2023). Serverless
computing: What it is, and what it is not?.
Communications of the ACM, 66(9),
80-92.

https://dl.acm.org/doi/pdf/10.1145/3587249
https://dl.acm.org/doi/pdf/10.1145/3587249

Other “layers”: Serverless

Self-hosting

IaaS/PaaS/SaaS

Serverless

https://dl.acm.org/doi/pdf/10.1145/3587249
https://dl.acm.org/doi/pdf/10.1145/3587249

GP-GPU, Fog, and Edge Computing

Owens, J. D., Houston, M.,
Luebke, D., Green, S., Stone, J. E.,
& Phillips, J. C. (2008). GPU
computing. Proceedings of the
IEEE, 96(5), 879-899.

GP-GPU computing involves the usage of a GPU—a processor originally designed for rendering
graphics—as a highly parallel programmable processor to handle computationally intensive
tasks across various domains.

Uses of GP-GPU Computing:

● Machine Learning and AI:
○ Training and inference for deep learning models.
○ Accelerating neural network computations.

● Scientific Applications:
○ Protein folding simulations.
○ Computational biophysics and molecular dynamics.
○ Fluid dynamics and heat transfer.

● Real-Time Graphics:
○ Game physics and rendering.
○ Simulation of physical environments in games.

● Data Processing:
○ Sorting and searching large datasets.

● General Numerical Computations:
○ Differential equation solvers.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4490127
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4490127

Providers (AWS, NVIDIA, Microsoft,
Google, IBM, Oracle, Huawei, Tencent)

AWS:
● EC2 with GPU Instances (NVIDIA

Tesla V100, T4, K80)
● Deep Learning AMIs (Amazon Machine

Images).
● AWS Lambda for GPU-powered

serverless workflows.

NVIDIA Cloud
● NVIDIA GPU Cloud (Focused on

NVIDIA GPUs, including A100 and
V100)

● Optimized software stacks for AI,
HPC, and data analytics.

● Pre-built containers for machine
learning frameworks.

Fog Computing
Bridges the gap between the cloud and end devices (e.g., IoT nodes) by enabling
computing, storage, networking, and data management on network nodes within the close
vicinity of IoT devices.

Computation, storage, networking, decision making, and data management not only occur
in the cloud, but also occur along the IoT-to-Cloud path as data traverses to the cloud
(preferably close to the IoT devices).

Yousefpour, A., Fung, C., Nguyen, T.,
Kadiyala, K., Jalali, F., Niakanlahiji, A., ...
& Jue, J. P. (2019). All one needs to
know about fog computing and related
edge computing paradigms: A complete
survey. Journal of Systems Architecture,
98, 289-330.

https://www.sciencedirect.com/science/article/pii/S1383762118306349
https://www.sciencedirect.com/science/article/pii/S1383762118306349

Edge Computing
Enhances the management, storage, and processing capabilities for data generated by
connected devices like mobile cloud computing (MCC) does for mobile devices.

The main difference with MCC is that edge computing operates at the edge of the
network, positioned near IoT devices—typically one hop away.

The edge is not directly on the IoT devices!

Ren, Y., Zhu, F., Qi, J., Wang, J., & Sangaiah, A. K. (2019). Identity management and
access control based on blockchain under edge computing for the industrial internet of
things. Applied Sciences, 9(10), 2058.

Cao, K., Liu, Y., Meng, G., & Sun, Q. (2020). An overview on edge computing research.
IEEE access, 8, 85714-85728.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9083958
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9083958

A short view about a public cloud…

Connecting…

https://us-west-2.console.aws.amazon.com/

ssh -i <my-key> ubuntu@<my-instance-ip-public-address>

https://us-west-2.console.aws.amazon.com/

A pipeline

A pipeline

A pipeline

A pipeline

A pipeline

A pipeline

Summary and Q&A

Summary and Q&A

● Summary and Q&A

○ Cloud Computing Motivation and Terminology

○ Cloud Computing Service Models

○ Cloud, Fog, and Edge Computing

● Next Lectures

○ 08 Cloud Resource Management and Scheduling [Dec 06]

Vielen Dank!

