Data Integration and Large
Scale Analysis

Slides credit: Matthias ehm - Shafaq Siddiqgi

08- Cloud Computing Fundamentals

Lucas lacono. PhD. - 2024

LU3. Cloud Computing

Cloud Computing Fundamentals
art ov 291

Cloud Resource Management and
Scheduling [Dec 06]
Large—Scale Data Distributed Data Storage[Dec 13]

Management & Analysis

LU4. Large-Scale Data
Analysis

Distributed, Data-Parallel
ar Computation [Jan 10]

Distributed Stream Processing
[Jan 17]

Large—Scale Data . Distributed Machine Learning
Management & Analysis Systems [Jan 24]

Motivation and
Terminology

Cloud Computing Service
Models

Cloud, Fog, and Edge
Computing

Motivation and Terminology

Motivation and Terminology

e How new it 1s?

Motivation and Terminology

CompuServe starts offering small-scale
John McCarthy conceptualize the idea of computing as a cloud-like storage
public utility at a lecture at MIT, envisioning "computing on

demand.” Tim Berners-Lee invents the World Wide Web

ARPANET is developed, enabling computational resources

sharing over a network. AWS presents EC2 and S3

70s 90s

60s 80s

IBM launches CP/CMS (Control Program/Cambridge Monitor Salesforce launches its CRM SaaS platform
System), an early virtualization system that allows multiple
users to run applications on a single mainframe.

Distributed computing concept emerges, focusing on resource
sharing across multiple machines (cluster computing).

Motivation and Terminology

e Definition
o “A Cloud is a type of parallel and distributed system consisting of a
collection of interconnected and virtualized computers that are
dynamically provisioned and presented as one or more unified
computing resource(s) based on service-level agreements established
through negotiation between the service provider and consumers” [*].

Buyya, R., Yeo, C. S., Venugopal, S.,
Broberg, J., & Brandic, I. (2009). Cloud
computing and emerging IT platforms:
Vision, hype, and reality for delivering
computing as the 5th utility. Future
Generation computer systems, 25(6),
599-616.

https://www.sciencedirect.com/science/article/pii/S0167739X08001957
https://www.sciencedirect.com/science/article/pii/S0167739X08001957

Motivation and Terminology A

|

% Google Workspace
databricks ™ E & J o

@ Google
‘ Red Hat App Engine

OpenShift

Motivation and Terminology

e Transforming IT Industry/Landscape

o Since ~2010 increasing move from on-prem to cloud resources
o System software licenses become increasingly 1irrelevant
o Few cloud providers dominate IaaS/PaaS/SaaS markets
o 2023 revenue:
m Microsoft ($ 111.6B)
Amazon AWS ($ 88B)
Oracle Cloud ($ 35.3B)
IBM Cloud ($ 20.8B)
Google Cloud (8.41B)
Alibaba Cloud ($ 3.789M)

Motivation and Terminology

e Argument #1: Pay as you go:
o No upfront cost for +infrastructure
o Variable utilization = over-provisioning
o Pay per use or acquired resources
e Argument #2: Economies of Scale
o Lower cost for purchasing and managing IT infrastructure at scale => lower
cost (applies to both HW resources and IT infrastructure/system experts)
o Focus on scale-out on commodity HW over scale-up = lower cost
e Argument #3: Elasticity
o System can scale up according to demand
o Virtually unlimited resources allows to reduce time as necessary ((Task time =
Time x Resources))
e Argument #4: Availability
o Resources are available 24x7

Characteristics and Deployment Models

Characteristics

On-demand self service. Users can access and manage computing
resources themselves without requiring human assistance.

Broad network access. Services are accessible from anywhere with an
internet connection, using various devices.

Resource pooling. Computing resources are shared among multiple
users through virtualization, securely and efficiently

Rapid elasticity. Resources can be scaled up or down quickly based
on demand, in real time.

Measured service. Resource usage 1is monitored and recorded to
optimize consumption and bill only for what you use.

Cloud Computing Service Models

(computing as a utility)

Rack

Anatomy Of a Data Center (16-64 servers + rack switch)

CPUs Servers (Sockets, RAM, Disks)

Cluster
(++Racks + Cluster switch)

Data center (Google Netherlands)

Fault Tolerance

Yearly Data Center Failures

(@)
(@)
(@)

O O O O O

O O O O

~0.5 overheating (power down most machines in <5 mins, ~1-2 days)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6
hrs)

~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)

~5 racks go wonky (40-80 machines see 50% packet loss)

~8 network maintenances (~30-minute random connectivity losses)

~12 router reloads (takes out DNS and external vIPs for a couple
minutes)

~3 router failures (traffic rerouting, ~ 1 hour to stabilize.)
~dozens of minor 30-second DNS -issues

~1000 -dndividual machine failures (2-4% failure rate, at least twice)
~thousands of hard drive failures (1-5% of all disks will die)

Fault Tolerance

e Other Common Issues
o Configuration issues, partial SW updates, SW bugs.
o Transient errors: no space left on device, memory corruption,
stragglers.
e Recap: Error Rates at Scale
o Cost-effective commodity hardware.
o Error rate increases with increasing scale.
o Fault Tolerance for distributed/cloud storage and data analysis.

Failures are -inevitable. large-scale systems are designed with fault tolerance to

ensure they can detect, recover from, and mitigate the impact of errors, ensuring
reliability and minimal downtime.

Fault Tolerance

Cost-effective Fault Tolerance
e BASE:

o BAsically available: system mostly operational even during failures,
providing partial functionality 1if necessary.

o Soft state: state of the system may change over time, even without
new input, due to replication or recovery processes.

o Eventual consistency: data may not be instantly consistent across
all nodes but will eventually synchronize to the correct state

Fault Tolerance

Cost-effective Fault Tolerance

e Data corruption prevention
o ECC (error correction codes)
o CRC (cyclic redundancy check)
e Resilient storage
o Replication (multiple data copies stored across nodes)
o Erasure coding (data fragmentation + redundancy)
o Checkpointing (save application state)
o Lineage (data origin + dependencies)
o Resilient compute: task re-execution / speculative execution

Virtualization |

e Native Virtualization
o Simulates most of the HW 1interface
o Unmodified guest 0S to run as 1if it were on real HW
o Examples: VMWare, Virtualbox, AMI (HVM)

e Advantages
o Guess 0S as it 1is!
o High compatibility
o High security

Virtualization Il

e Para-virtualization
o No HW interface simulation, but special API (hypercalls)

replacing hardware instructions.
o Requires modified guest 0S to use hyper calls, trapped by

hypervisor
o Examples: Xen, KVM, Hyper-V, AMI (PV)

e Advantages
o Faster and more efficient than native virtualization (skips

the overhead of hardware simulation).
o Ideal for environments where performance 1is critical, and

modifying the 0S 1is acceptable.

Virtualization ll|

e O0S-level Virtualization
o Allows multiple isolated environments (virtual servers or
containers) to run on the OS.
o Guest 0S appears isolated but same as host OS
o Examples: Solaris/Linux containers, Docker
e Application-level Virtualization
o App executed within a virtualized runtime environment that
abstracts away dependencies on the host system.
o Examples: Java VM (JVM), Ethereum VM (EVM), Python
virtualenv

In brief

Topic Native Virtualization Para Virtualization OS-level Virtualization Application-level Virtualization
Definition Simulates hardware fully | Uses hypercalls, no HW Containers sharing host Virtualizes specific applications
emulation oS
Guest OS Unmodified Modified Same as host 0OS NA
Performance Moderate (HW High Very high High
overhead)
Examples VMware, Parallels Xen, KVM Docker, Linux Containers | JVM, Python virtualenv
Use Case Mixed OS environments High-performance VMs Cloud-native apps App portability across platforms

BONUS: Containerization

e Docker Containers
o Shipping container analogy
m Arbitrary, self-contained goods, standardized
units
m Containers reduced loading times = efficient
international trade
o Self-contained package of necessary SW and data
(read-only 1image)
o Lightweight virtualization w/ shared 0S and resource
isolation via control groups

BONUS: Containerization

e Cluster Schedulers
o Container orchestration: scheduling, deployment, and
management
o Resource negotiation with clients
o Typical resource bundles (CPU, memory, device)
o Examples: Kubernetes, Mesos, (YARN), Amazon ECS,
Microsoft ACS, Docker Swarm

i hERbER

S o
kubernetes =g MESOS

0

LT
is

[l
iziramazon

¥ webservices

How far can we go?

e Snowmobile Service: Data transfer on-premise - cloud
via 100PB trucks w/ 1Gb 1link

=) nn
o8
.
; e, 6
AWS Snowball ' ' g :

In the AWS Snow family AWS prepares and ships When the device(s) Read or write data to When ready, ship the Upon arrival, your data is
management console Create the device(s) to you for arrives, power it on, the device with AWS device back to AWS. The transferred to your Amazon
a job and select your device arrival in approximately unlock it, and connect OpsHub, NFS, or the built-in e-link shipping label auto- S3 bucket, verified, and

4-6 business days to your local network Amazon S3 Adapter updates for easy return securely erased

il

Create large data Track progress of data
migration plan* migration plan*

https://aws.amazon.com/en/snowball/
https://aws.amazon.com/en/snowball/

How far can we go?

Microsoft Underwater Datacenter

http://www.youtube.com/watch?v=lBeepqQBpvU

Cloud vs other HPC Technologies

Computing Techniques Features

Cloud Computing

Cost efficient, almost unlimited storage, backup and recovery, easy
deployment

Grid Computing

Efficient use of idle resources, modular, parallelism can be achieved,
handles complexity

Cluster Computing

Reduced cost, processing power, improved network technology,
scalability, availability

Manvi, S. S., & Shyam, G. K. (2014).
Resource management for Infrastructure
as a Service (laaS) in cloud computing:
A survey. Journal of network and
computer applications, 41, 424-440.

https://www.sciencedirect.com/science/article/pii/S1084804513002099
https://www.sciencedirect.com/science/article/pii/S1084804513002099

Cloud Computing Service Models

@ Google Workspace
MBS DG Canva

databricks

@ Google
& RedHat App Engine Elastic
OpenShift Beanstalk

NINg
B¥ webservices

R

0 NINg
<A NVIDIA. nEramazon

IaaS NF webservices

Combination of hosting, hardware provisioning, basic services, and other services
needed to run a cloud.

Uses of IaaS:

e Provides access to shared resources on need basis, without revealing details like
location and hardware to clients.

e Provides details like server images on demand, storage, queuing, and information
about other resources.

e Offers full control of server infrastructure, not limited specifically to
applications, 1instances and containers.

Major issues associated with IaaS:

Resource management.
Internet access.
Virtualization.

Data management.
APIs.
Interoperability.

@ Google
‘ Red Hat App Engine L stic
Pa a S OpenShift Beanstalk

Provision of a computing platform and the provision and deployment of the associated
set of software applications (called a solution stack).

Uses of PaaS:

e Provides developers with tools, frameworks, and runtime environments to build and
deploy applications efficiently.

e Removes the need to worry about hardware, operating systems, or server management.

e While IaaS provides control over server 1infrastructure, PaaS limits control to
what’s essential for applications, offering an environment tuned specifically for
application development and management.

Major issues associated with PaaS:

Provider reliability
Resource management
Internet dependency
Performance
Scalability costs

SaaS S mbeaa Canwa

databricks

Software as a Service is a software distribution model in which applications are hosted
by a vendor or service provider and made available to customers over a network.

Uses of SaaS:

On-demand software access.
Scalability

Cost-effective solution

Cross device availability
Collaboration and real-time updates

Major issues associated with SaaS:

Internet dependency
Performance

Long-term cost

Data Security and Privacy

Other “layers™: Serverless Computing

A cloud computing paradigm where developers can build and run applications without
managing server infrastructure. Operational responsibilities like fault tolerance,
scaling, and resource allocation are handled by cloud providers.

Uses of SaaS:

e Function-as-a-Service (FaaS): Runs stateless, event-driven functions in response
to triggers.

e Serverless Databases: Auto-scale capacity as needed and hibernate during periods
of inactivity, reducing costs while maintaining availability.

Kouney, S., Herbst, N., Abad, C. L.,
losup, A., Foster, |., Shenoy, P., ... &
Chien, A. A. (2023). Serverless
computing: What it is, and what it is not?.
Communications of the ACM, 66(9),
80-92.

https://dl.acm.org/doi/pdf/10.1145/3587249
https://dl.acm.org/doi/pdf/10.1145/3587249

Other “layers”: Serverless

Serverless
IaaS/PaaS/SaaSsS
4 Y
Self-hosting

Traditional movers

; I]n..m
::: == =.l :g@

Fine-grained

All ob)ects Any route All decisions Allcovered Utilization-based Small team
Limited support Major roads Basic Coarse-grained Large team
Yourself Yourself Yourself Yourself Yourself Yourself

https://dl.acm.org/doi/pdf/10.1145/3587249
https://dl.acm.org/doi/pdf/10.1145/3587249

GP-GPU, Fog, and Edge Computing

GP-GPU computing involves the usage of a GPU-a processor originally designed for rendering
graphics—as a highly parallel programmable processor to
tasks across various domains.

Uses of GP-GPU Computing:

Machine Learning and AI:
o Training and inference for deep learning models.
o Accelerating neural network computations.

Scientific Applications:
o Protein folding simulations.
o Computational biophysics and molecular dynamics.
o Fluid dynamics and heat transfer.

Real-Time Graphics:
o Game physics and rendering.
o Simulation of physical environments in games.

Data Processing:

o Sorting and searching large datasets.

General Numerical Computations:
o Differential equation solvers.

handle computationally -intensive

d
GPU Computing

Owens, J. D., Houston, M.,
Luebke, D., Green, S., Stone, J. E.,
& Phillips, J. C. (2008). GPU
computing. Proceedings of the
IEEE, 96(5), 879-899.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4490127
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4490127

Providers (AWS, NVIDIA, Microsoft,
Google, IBM, Oracle, Huawei, Tencent)

AWS
e EC2 with GPU Instances
Tesla V100, T4, K80)
e Deep Learning AMIs (Amazon Machine
Images) .
e AWS Lambda for
serverless workflows.

(NVIDIA

GPU-powered

NVIDIA Cloud

e NVIDIA GPU Cloud (Focused on
NVIDIA GPUs, 1including Al100 and
V100)

e Optimized software stacks for AI,
HPC, and data analytics.

e Pre-built containers for
learning frameworks.

machine

Aspect

Performance

Parallelism

Energy Efficiency

Cost Efficiency

Flexibility

Applications
Hardware Utilization

Scalability

Memory Bandwidth

Programming Tools

Latency
Hardware Lifespan

Data Transfer

Pros

High computational power for parallel
processing and data-intensive tasks.

Highly efficient for workioads with
significant parallelism, such as Al, ML,
and scientific simulations.

Better performance-per-watt compared
to CPUs for parallel tasks.

Cost-effective for large-scale
computations due to faster task
compietion.

Compatible with various frameworks
like CUDA, OpenCL, TensorFlow, and
PyTorch.

Versatile applications in Al, gaming,
scientific simulations, and data
analytics.

Maximizes hardware use with dense
and parallel computations.

Can be scaled by adding more GPUs
for demanding workloads.

High memory bandwidth enables
faster data processing for large
datasets.

Rich ecosystem of programming tools
(e.g., CUDA, OpenCL) for developing
optimized solutions.

Excellent for high-throughput
applications with less sensitivity to
latency.

Long lifespan with consistent
performance for specific tasks.

Efficient for tasks with high
computation-to-data transfer ratios.

Cons

Limited performance on tasks that are
inherently serial.

Inefficient for workloads with low parallelism.

High energy consumption for sustained
operations, especially in large deployments.

High upfront costs for purchasing and
maintaining hardware.

Requires specialized knowledge for effective
programming and optimization.

Limited utility in general-purpose or
low-demand computing tasks.

Requires workloads to be carefully structured
to utilize GPU resources efficiently.

Limited by physical space, thermal
constraints, and power requirements.

Smaller memory size compared to CPUs can
limit large-scale applications.

Programming complexity and debugging can
be challenging for beginners.

Latency can be a bottleneck in real-time
applications requiring immediate responses.

Rapid hardware obsolescence due to fast
advancements in GPU technology.

Slow data transfer between CPU and GPU
can create bottlenecks in some applications.

Aspect

Performance

Parallelism

Energy Efficiency

Cost Efficiency

Flexibility

Applications
Hardware Utilization

Scalability

Memory Bandwidth

Programming Tools

Latency
Hardware Lifespan

Data Transfer

Pros

High computational power for parallel
processing and data-intensive tasks.

Highly efficient for workioads with
significant parallelism, such as Al, ML,
and scientific simulations.

Better performance-per-watt compared
to CPUs for parallel tasks.

Cost-effective for large-scale
computations due to faster task
compietion.

Compatible with various frameworks
like CUDA, OpenCL, TensorFlow, and
PyTorch.

Versatile applications in Al, gaming,
scientific simulations, and data
analytics.

Maximizes hardware use with dense
and parallel computations.

Can be scaled by adding more GPUs
for demanding workloads.

High memory bandwidth enables
faster data processing for large
datasets.

Rich ecosystem of programming tools
(e.g., CUDA, OpenCL) for developing
optimized solutions.

Excellent for high-throughput
applications with less sensitivity to
latency.

Long lifespan with consistent
performance for specific tasks.
Efficient for tasks with high
computation-to-data transfer ratios.

Cons

Limited performance on tasks that are
inherently serial.

Inefficient for workloads with low parallelism.

High energy consumption for sustained
operations, especially in large deployments.

High upfront costs for purchasing and
maintaining hardware.

Requires specialized knowledge for effective
programming and optimization.

Limited utility in general-purpose or
low-demand computing tasks.

Requires workloads to be carefully structured
to utilize GPU resources efficiently.

Limited by physical space, thermal
constraints, and power requirements.

Smaller memory size compared to CPUs can
limit large-scale applications.

Programming complexity and debugging can
be challenging for beginners.

Latency can be a bottleneck in real-time
applications requiring immediate responses.

Rapid hardware obsolescence due to fast
advancements in GPU technology.

Slow data transfer between CPU and GPU
can create bottlenecks in some applications.

Fog Computing

Bridges the gap between the cloud and end devices (e.g., IoT nodes) by enabling
computing, storage, networking, and data management on network nodes within the close
vicinity of IoT devices.

Computation, storage, networking, decision making, and data management not only occur
in the cloud, but also occur along the IoT-to-Cloud path as data traverses to the cloud
(preferably close to the IoT devices).

o -

\

, Uttra-low latency,

Energy, Manufacturing,

/ location awareness,

\
N
Transporlation‘, Fiﬁance \ / Efficiency in network Yousefpour, A., Fung, C., Nguyen, T.,
Telecommunication, load, High bandwidth, Kadiyala, K., Jalali, ., Niakanlahiji, A., ...
Healihcare, Reta, ﬁ Security, Real-time & Jue, J. P. (2019). All one needs to
Smart Cities, L analytics, know about fog computing and related
Agriculture N _— - Agity edge computing paradigms: A complete

survey. Journal of Systems Architecture,
98, 289-330.

Construction, Oil and Gas,

Computation, Storage, Measure, Monitor,
Communication, Control, Process,

Decision Making Analyze, React

https://www.sciencedirect.com/science/article/pii/S1383762118306349
https://www.sciencedirect.com/science/article/pii/S1383762118306349

Edge Computing

Enhances the management, storage, and processing capabilities for data generated by
connected devices like mobile cloud computing (MCC) does for mobile devices.

The main difference with MCC is that edge computing operates at the edge of the
network, positioned near IoT devices—typically one hop away.

The edge is not directly on the IoT devices!

Cao, K., Liu, Y., Meng, G., & Sun, Q. (2020). An overview on edge computing research. Cloud
IEEE access, 8, 85714-85728. ol \

Edge
Manager

Edge / \
Networks,‘,,_/._\ sl

Ren, Y., Zhu, F,, Qi, J., Wang, J., & Sangaiah, A. K. (2019). Identity management and
— access control based on blockchain under edge computing for the industrial internet of
things. Applied Sciences, 9(10), 2058.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9083958
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9083958

A short view about a public cloud...

Connecting...

ssh -1 <my-key> ubuntu@<my-instance-ip-public-address>

https://us-west-2.console.aws.amazon.com/

A pipeline

A pipeline

A pipeline

A pipeline

A pipeline

Summary and Q&A

Summary and Q&A

e Summary and Q&A
o Cloud Computing Motivation and Terminology
o Cloud Computing Service Models
o Cloud, Fog, and Edge Computing

e Next Lectures

o 08 Cloud Resource Management and Scheduling [Dec 06]

Vielen Dank!

