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Learning Objectives

● Understand the importance of resource management and scheduling in 
cloud computing.

● Learn about common scheduling algorithms and their applications.
● Explore real-world use cases and research  trends in cloud resource 

scheduling.
● Gain practical competences in scheduling algorithms.



Review

SaaS
Docs, Email, Games, etc.

PaaS
APIs, SDKs, and more

IaaS
VMs, Storage, Network
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Motivation and Terminology



Motivation and Terminology

● How I can feed my hungry app with computing and 
storage resources?



What is Cloud Resource Management?
(Easy) Definition:

The process of efficiently allocating computational, storage, and network resources to 
meet the needs of applications and users in cloud environments.

Key Factors:

● Availability: Are resources ready for use?
● Efficiency: Are resources optimally utilized?
● Cost: Are costs minimized while meeting objectives?

Example:

Netflix manages server capacity during peak hours to support millions of users streaming 
simultaneously.

Fortnite live shows



Types of Cloud Resources
Computational Resources:

● CPUs, GPUs
● Example: AWS EC2 instances /NVDIA GPUs .

Storage Resources:

● Distributed file systems, databases.
● Example: Amazon S3 or Google Cloud Storage.

Network Resources:

● Bandwidth, load balancing, connectivity.
● Example: Cloudflare’s CDN for global content delivery.



What is Scheduling?

Definition:

Scheduling involves assigning tasks to available resources efficiently, based on 
predefined criteria such as priority, execution time, or costs.

Why is it Important?

● Enhances QoS.
● Reduces costs through better resource utilization.
● Prevents overloading or underutilization of resources.

Example:

● Training an AI model on GPUs is scheduled at night to minimize cost.



What is Scheduling?
Taxonomy of Cloud Resource Scheduling

Zhan, Z. H., Liu, X. F., Gong, Y. J., Zhang, J., Chung, H. S. 
H., & Li, Y. (2015). Cloud computing resource 
scheduling and a survey of its evolutionary approaches. 
ACM Computing Surveys (CSUR), 47(4), 1-33.

https://dl.acm.org/doi/abs/10.1145/2788397
https://dl.acm.org/doi/abs/10.1145/2788397


Cloud Computing Scheduling



Key Factors in Scheduling

● Task Priority:
○ Critical tasks are prioritized.
○ Example: Emergency vehicle routing.

● Execution Time:
○ Tasks with shorter times may be prioritized to optimize throughput.
○ Example: Obstacle detection.

● Load Balancing:
○ Ensures resources are equally utilized.
○ Example: AWS regions balancing traffic loads to compute traffic 

planning.
● Energy Efficiency:

○ Optimizes to reduce power consumption.
○ Example: Shutting down idle servers during low usage periods (few 

vehicles at night).



Challenges in Scheduling
Energy Optimization:

● Balancing performance with reduced energy consumption.

Scheduling in Hybrid Environments:

● Example: Combining edge devices and cloud servers for IoT applications.

AI-Driven Scheduling:

● Using Machine Learning to predict demand and optimize scheduling.
● Example: Google Cloud’s Dynamic Workload Scheduler

Lohmeyer, M., Ionita, L., (2023). Dynamic 
Workload Scheduler: Optimizing 
resource access and economics for 
AI/ML workloads. Google Cloud Blog.

https://cloud.google.com/blog/products/compute/introducing-dynamic-workload-scheduler
https://cloud.google.com/blog/products/compute/introducing-dynamic-workload-scheduler


Common Scheduling Algorithms

First-Come, First-Served (FCFS):

Assigns tasks in the order they arrive.

● Advantage: Simple to implement.
● Disadvantage: Inefficient if long tasks arrive first.
● Example

a. Tasks: T1 (2s), T2 (4s), T3 (1s)
b. Execution order: T1 → T2 → T3

● Total time: 2 + 4 + 1 = 7 seconds.
Anthony, R. (2015). 
Systems programming: 
designing and developing 
distributed applications. 
Morgan Kaufmann.



Procedure FCFS_Scheduling(tasks):
    Initialize total_time = 0
    For each task in tasks:
        Print "Executing task:", task.id, "Execution 
time:", task.execution_time
        total_time = total_time + task.execution_time
    End For
    Print "Total execution time:", total_time
End Procedure

1. Receives a list of tasks with their execution times.
2. Iterates through each task and sums its execution 

time to the total.
3. Prints the total execution time.



Common Scheduling Algorithms

Round Robin:

● Allocates a fixed time slice (quantum) to each task in a cyclic order.
● Example: 
● Tasks:  T1 (2s), T2 (4s), T3 (1s)
● Quantum: 1s
● Execution order:

a. Round 1: T1 (1s), T2 (1s), T3 (1s)
b. Round 2: T1 (1s), T2 (1s)
c. Round 3: T2 (1s)
d. Round 4: T2 (1s)

● Total time: 7 seconds.



Procedure RoundRobin_Scheduling(tasks, quantum):
    Initialize total_time = 0
    While tasks is not empty:
        For each task in tasks:
            If task.execution_time > quantum:
                Print "Executing:", task.id, "for", quantum, "units"
                task.execution_time = task.execution_time - quantum
                total_time = total_time + quantum
            Else:
                Print "Completing task:", task.id, "Remaining time:", 
task.execution_time
                total_time = total_time + task.execution_time
                Remove task from tasks
            End If
        End For
    End While
    Print "Total execution time:", total_time
End Procedure

1. Each task executes for a maximum of quantum time units.
2. If a task is not completed, its remaining time is reduced, and it is 

rescheduled.
3. Repeats until all tasks are completed.



Common Scheduling Algorithms
Min-Min and Max-Min:

● Min-Min: Assigns shortest tasks first.
● Max-Min: Assigns longest tasks first.
● Tasks: T1 (2s), T2 (4s), T3 (1s)
● Resources: S1, S2
● Assignment order (Min-Min):

a. T3  → S1
b. T1  → S2
c. T2  → S1

● Assignment order (Max-Min):
a. T2  → S1
b. T1  → S2
c. T3  → S1



Procedure MinMin_Scheduling(tasks, resources):
    While tasks is not empty:
        Find task_min = Task with the shortest execution_time
        Assign task_min to the least loaded resource
        Remove task_min from tasks
        Print "Assigning task:", task_min.id, "to the least loaded 
resource"
    End While
End Procedure

● Finds the task with the shortest execution time in 
each iteration.

● Assigns the task to the least loaded resource.
● Repeats until no tasks are left.



Common Scheduling Algorithms

Load Balancing:

● Distributes tasks equally across all available resources.
● Tasks: T1 (2s), T2 (4s), T3 (1s)
● Resources: S1, S2
● Result:

a. 0 → S1, 0 →S2
b. T1 (2s) → S1, 0 → S2 (Total load: 2)
c. T1 (2s) → S1, T2 (4s) → S2 (Total load: 6)
d. T3 (1s) + T1 (2s)→ S1, T2 (4s) →S2 (Total load: 7)
e. S1 = 3s , S2 = 4s



Procedure LoadBalancing_Scheduling(tasks, resources):
    Initialize resource_load = [0 for each resource]
    For each task in tasks:
        Find least_loaded_resource = Resource with minimum load
        Assign task to least_loaded_resource
        Update resource_load for least_loaded_resource
        Print "Task:", task.id, "assigned to resource:", 
least_loaded_resource
    End For
End Procedure

1. Initializes the load for each resource to 0.
2. Assigns each task to the least loaded resource.
3. Updates the load for the corresponding resource.



Algorithm Advantage Disadvantage Ideal Use Case

FCFS Simple and easy to implement Inefficient with long tasks first Light and homogeneous workloads 
(e.g. Max and Min temp detection in IoT 
time series)

Round Robin Fair, avoids resource blocking Does not optimize execution 
times

Interactive processing (Human-Machine 
interaction)

Min-Min Optimizes execution times Requires global analysis Large workloads with varied tasks 
(HPC, short tasks and makespan 
minimization)

Load Balancing Balances resource usage Ignores task priority or 
execution time

Real-time scenarios (Web servers load 
balance to manage users’ requests).



Advanced Scheduling Algorithms

Heuristic-based

● Genetic Algorithms
● Particle Swarm Optimization
● Others (simulated annealing, etc.).

Used for complex, large-scale systems.



What are Metaheuristics?
Definition:

● Metaheuristics are high-level optimization algorithms designed to find approximate 
solutions for complex problems that are hard to solve using traditional methods.

Key Features:

● General Framework: Not problem-specific.
● Exploration and Exploitation: Search new domains (exploration) and refining existing 

solutions (exploitation).
● Scalability: Works well with large, complex problems.

Examples:

● Genetic Algorithms (GA)
● Particle Swarm Optimization (PSO)
● Simulated Annealing



Metaheuristics for Scheduling?
Complexity of Scheduling:

● Traditional algorithms (e.g., FCFS, Round Robin) struggle with high-dimensional 
or dynamic scheduling problems.

Dynamic Environments:

● Real-time adjustments based on changing workloads and resource availability.

Multi-Objective Optimization:

● Balances conflicting goals like cost, energy consumption, and performance.

Example:

● Allocating tasks in a hybrid cloud environment where some tasks prioritize speed 
while others prioritize cost efficiency.



Metaheuristics

Particle Swarm

http://www.youtube.com/watch?v=jfoAYg-gk98
http://www.youtube.com/watch?v=jfoAYg-gk98


Metaheuristics

Particle Swarm Optimization: Frost Prediction

● Application: Frost Prediction Applications
● Challenge: Efficient scheduling of CPU-intensive tasks in 

federated clouds, minimizing makespan (execution time) and 
monetary cost.

● Federated Clouds: Utilized for distributed computing across 
geographically dispersed datacenters.

Pacini, E., Iacono, L., Mateos, C., & 
García Garino, C. (2019). A 
bio-inspired datacenter selection 
scheduler for federated clouds and its 
application to frost prediction. 
Journal of Network and Systems 
Management, 27(3), 688-729.

https://link.springer.com/article/10.1007/s10922-018-9481-0
https://link.springer.com/article/10.1007/s10922-018-9481-0


Metaheuristics: Particle Swarm Optimization

Key Aspects: 

● Two schedulers PSO and ACO
● Implemented at the broker (datacenter selection) and IaaS 

(VM allocation) levels

Multi-objective Optimization: 

● Balanced trade-offs between makespan, monetary cost, and 
resource availability.

● Included considerations for network latencies and 
datacenter capacities.

Pacini, E., Iacono, L., Mateos, C., & 
García Garino, C. (2019). A 
bio-inspired datacenter selection 
scheduler for federated clouds and its 
application to frost prediction. 
Journal of Network and Systems 
Management, 27(3), 688-729.

https://link.springer.com/article/10.1007/s10922-018-9481-0
https://link.springer.com/article/10.1007/s10922-018-9481-0


Metaheuristics: Particle Swarm Optimization

Broker-Level Scheduler:

● Selects datacenters considering communication latency and monetary 
cost using PSO and ACO.

● Weighs monetary cost (e.g., VM pricing) and latency with adjustable 
parameters.

Infrastructure-Level Scheduler:

● Allocates VMs to datacenter hosts.
● Ensures efficient use of physical resources to minimize costs and 

execution delays.

VM-Level Scheduler:

● FCFS-based job scheduling within preallocated VMs.

Pacini, E., Iacono, L., Mateos, C., & 
García Garino, C. (2019). A 
bio-inspired datacenter selection 
scheduler for federated clouds and its 
application to frost prediction. 
Journal of Network and Systems 
Management, 27(3), 688-729.

https://link.springer.com/article/10.1007/s10922-018-9481-0
https://link.springer.com/article/10.1007/s10922-018-9481-0


Metaheuristics: Particle Swarm Optimization

Experimental Validation:

● Simulated frost applications with real-world frost prediction data using 
CloudSim.

● Achieved 50% reduction in makespan and monetary costs compared to 
traditional Genetic Algorithms (GAs).

Advantages of PSO:

● Faster convergence and adaptability to dynamic cloud environments.
● Effective in balancing load among heterogeneous datacenters.

Pacini, E., Iacono, L., Mateos, C., & 
García Garino, C. (2019). A 
bio-inspired datacenter selection 
scheduler for federated clouds and its 
application to frost prediction. 
Journal of Network and Systems 
Management, 27(3), 688-729.

https://link.springer.com/article/10.1007/s10922-018-9481-0
https://link.springer.com/article/10.1007/s10922-018-9481-0


Procedure PSO(tasks, num_particles, iterations):
    Initialize particles with random positions (schedules) and 
velocities
    For iteration in 1 to iterations:
        For each particle:
            Evaluate fitness of the particle's position
            Update personal best and global best positions
            Adjust velocity based on personal and global best
            Update particle's position
        End For
    End For
    Return global best schedule
End Procedure

Key Components:
● Particle: A potential schedule.
● Velocity: How a particle adjusts its solution.
● Global Best: The best solution found so far.



Other Metaheuristics
Genetic Algorithms (GA):

● Inspired by natural selection.

Process:

● Selection: Choose the best solutions.
● Crossover: Combine solutions to create new ones.
● Mutation: Introduce randomness for diversity.

Use Case: Optimizing resource allocation in data centers.



Procedure GeneticAlgorithm(tasks, population_size, generations):
    Initialize population with random schedules
    For generation in 1 to generations:
        Evaluate fitness of each schedule
        Select top-performing schedules
        Perform crossover to generate new schedules
        Apply mutation to introduce variability
    End For
    Return best schedule found
End Procedure

Key Terms:

● Fitness: Measure of how well a schedule meets objectives.
● Crossover: Combines two schedules to form a new one.
● Mutation: Introduces small changes to avoid local optima.



Other Metaheuristics
Simulated Annealing (SA):

Inspired by the annealing process in metallurgy.

Process:

● Starts with a high "temperature" (randomness).
● Gradually cools, refining solutions over time.

Use Case: Task scheduling for makespan and cost 
minimization and resource load balanceAarts, E., Korst, J., & 

Michiels, W. (2005). 
Simulated annealing. 
Search methodologies: 
introductory tutorials in 
optimization and decision 
support techniques, 
187-210.

http://www.youtube.com/watch?v=NPE3zncXA5s
http://www.youtube.com/watch?v=NPE3zncXA5s
https://pure.tue.nl/ws/portalfiles/portal/1332973/496713.pdf
https://pure.tue.nl/ws/portalfiles/portal/1332973/496713.pdf


Benefits of AI-Driven Scheduling
Adaptive:

● Can respond dynamically to changes in workload or resource availability.

Efficient for Large-Scale Problems:

● Handles high-dimensional search spaces effectively.

Multi-Objective Capabilities:

● Balances trade-offs like speed, cost, and energy consumption.

Example:

● Using PSO to balance CPU usage across multiple virtual machines.



Challenges in AI-Driven Scheduling
Computational Overhead:

● Metaheuristics may require significant computing power, especially for real-time 
scheduling.

Parameter Tuning:

● Algorithms like GA and PSO require careful tuning of parameters (e.g., mutation rate, 
swarm size).

Convergence Issues:

● Risk of “getting stuck” in local optima.

Example:

● GA might produce suboptimal task allocations if mutation is too low.



Real-World Use Cases

IoT Data Processing:

● Example: Real-time sensor data analysis in a smart factory.

Big Data Analytics:

● HPC: Slurm and Apache Hadoop Yarn
● Cloud: AWS Fargate (Serverless + Containers) & Google Cloud 

Scheduler.



Real-World Use Cases

Machine Learning:

● Training and deployment of large-scale ML models.
● Example: Google TPUs for deep learning workloads.

Streaming and Gaming Services:

● Example: FORTNITE scaling resources to handle high-demand 
content.



Hands-on Activity



Hands-On Activity 
 Simulating Scheduling Algorithms

● Objective: Implement and compare FCFS, Round Robin, MIN-MIN - Genetic and PSO.
● Instructions:

○ Use the provided Jupyter Notebook (Colab - Python)
○ Experiment with different task loads and parameters (e.g. quantum values, random).
○ Analyze execution times for each algorithm.

Questions for Discussion:

1. Which algorithm performs better in terms of total time?
2. How does the quantum value affect Round Robin’s performance?
3. Which factors are critical when choosing a scheduling algorithm?

https://drive.google.com/drive/folders/1HEKCvXf3FgVSH7uen7_qkeWHchZOxCRg?usp=sharing
https://drive.google.com/drive/folders/1HEKCvXf3FgVSH7uen7_qkeWHchZOxCRg?usp=sharing


 Scheduling Example – Computing Power Allocation
Optimizing Task Scheduling in a High-Performance Computing (HPC) Environment

Scenario:

A research institution runs simulations that require a large amount of computing power across multiple servers. 
Each simulation task has varying computational requirements and deadlines. Efficient scheduling is critical to 
ensure optimal usage of computing resources while meeting task deadlines.

Details

● Resources:
○ 4 servers with different units of computing power:

■ Server A: 10 units of computing power.
■ Server B: 8 units of computing power.
■ Server C: 6 units of computing power.
■ Server D: 5 units of computing power.

● Tasks:
○ Task 1: Requires 20 units of computing power, deadline = 4 hours.
○ Task 2: Requires 10 units of computing power, deadline = 2 hours.
○ Task 3: Requires 15 units of computing power, deadline = 3 hours.
○ Task 4: Requires 5 units of computing power, deadline = 1 hour.

Challenge:

How can we assign tasks to servers to:

1. Meet deadlines.
2. Minimize the total execution time.
3. Balance the computational load across servers.



 Scheduling Example – Computing Power Allocation
Solution Using Scheduling

Step 1: Identify Available Resources

Each server contributes a fraction of the required computing power.

● Server A: Contributes 10 units/hour.
● Server B: Contributes 8 units/hour.
● Server C: Contributes 6 units/hour.
● Server D: Contributes 5 units/hour.

Step 2: Select Scheduling Algorithm

1. Round Robin:
Assign tasks to servers in a cyclic order until the task’s computing requirements are met.

2. Min-Min:
Assign the shortest task (in terms of computing power needed) to the server with the most availability.



 Scheduling Example – Computing Power Allocation
Result with Min-Min Scheduling

Task Assignment:

● Task 1 (20 units): Assigned to Server A and Server B (10 units/hour each) → Completed in 2 hours.
● Task 2 (10 units): Assigned to Server C (6 units/hour) and Server D (4 units/hour) → Completed in 1.67 hours.
● Task 3 (15 units): Assigned to Server A (10 units/hour) and Server B (5 units/hour) → Completed in 1.5 hours.
● Task 4 (5 units): Assigned to Server D (5 units/hour) → Completed in 1 hour.

Benefits

1. Efficiency:
Resources are utilized optimally, with no idle servers.

2. Deadline Compliance:
Tasks are completed within their respective deadlines.

3. Balanced Load:
The computational load is distributed across servers, preventing bottlenecks.



Summary



Final Remarks
● Resource management and scheduling are crucial for optimizing performance, cost, 

and efficiency in cloud environments.
● Each algorithm has strengths and weaknesses depending on the use case.
● Trends like AI-driven scheduling and energy optimization are shaping the future of 

cloud computing.



Vielen Dank!


