Data Integration and Large
Scale Analysis

Slides credit: Mat

12- Distributed ML Systems

Lucas lacono. PhD. - 2025

Landscape of ML Systems
Distributed Parameter Servers

Agenda Large Language Models at HPC

Q&A and Exam Preparation

Landscape of ML Systems

What is an ML System?

Classification

! 1
! 1 :
g : Regression
i ' Machine '
e I-}ppllcatlons | Data : i Recommenders
(entire KDD/DS | Mini Learning : l ;
lifecycle) ' ning (ML) I ustering
: | Dim Reduction
1

; Neural Networks

Rapidly Evolving
Runtime Techniques
(Execution, Data Access)

Compilation
Techniques

Data Accelerators
Management

HW
Architecture

Operating
Systems

From KDD to the Al Lifecycle

The KDD Process
for Extracting Useful
Knowledge from

Classic KDD (Knowledge Discovery +in Databases)

Descriptive (association rules, clustering) and predictive
Fayyad, U., Piatetsky-Shapiro,
G., & Smyth, P. (1996). The
KDD process for extracting
useful knowledge from volumes
of data. Communications of the
ACM, 39(11), 27-34.

Yy
&
PRE PROCESSED DATA TRANSFORMED DATA \\/' 4%@

DATA TARGET DATA

https://dl.acm.org/doi/10.1145/240455.240464
https://dl.acm.org/doi/10.1145/240455.240464

From KDD to the Al Lifecycle

CRISP-DM (Cross-Industry Standard
Process for Data Mining)

Business e . Data
Understanding Bl Understanding

What’s new? Business Understanding and
Deployment (A business perspective)

Data
Preparation

§ |
3

Deployment
3 \ Modeling

Data

Source: Statistik Dresden

https://statistik-dresden.de/crisp-dm-ein-standard-prozess-modell-fur-data-mining/

From KDD to the Al Lifecycle

AI L1 fecyC1e Problem

Definition

MLOps: Model Data
Monitoring & Acquisition
= Maintenance and

Preparation

Model
Development &
Training

Model
Deployment

Model
Evaluation &
Refinement

Ref: Jeffrey Saltz. Data Science Process Alliance.

https://www.datascience-pm.com/ai-lifecycle/

Credit: Andrew Ng’ 14

Driving Factors for ML

o
o
]
S
v

Q

Improved Algorithms and Models

Amount of data

e Success across data and application domains

o (e.g., health care, finance, transport, Feedback Loop
production)
e More complex models which leverage large data /// pata \\
Availability of Large Data Collections

Usage Model

e Increasing automation and monitoring data
e (simplified by cloud computing & services)
e Feedback loops, data programming/augmentation

Driving Factors for ML

HW & SW Advancements

e Higher performance of hardware and
infrastructure (cloud)

e Open-source large-scale computation
frameworks, ML systems, and
vendor-provides libraries

Stack of ML Systems
9
o Uite, Avton T

Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML

Language Abstractions Fager interpretation, lazy
evaluation, prog. compilation

Stack of ML Systems

Training
ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Supervised, unsupervised, RL,
libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML
Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Fault Tolerance checkpointing, checksums, ECC

. . Local, distributed, cloud
Execution Strategies (data, task, parameter server)

Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML
Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Fault Tolerance checkpointing, checksums, ECC

. . Local, distributed, cloud
Execution Strategies (data, task, parameter server)

Dense & sparse tensor/matrix;

Data Representations compress, partition, cache

Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML
Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Fault Tolerance checkpointing, checksums, ECC

. . Local, distributed, cloud
Execution Strategies (data, task, parameter server)

Dense & sparse tensor/matrix;

Data Representations compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

HW & Infrastructure

Stack of ML Systems

Training

Supervised, unsupervised, RL,

Deployment & Scoring ML Apps & Algorithms Libs. AutoML
)

Validation & Debugging Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Hyper-parameter tuning Fault Tolerance checkpointing, checksums, ECC

. . . Local, distributed, cloud
Model and Feature Selection Execution Strategies (data, task, parameter server)

Data Programming and

o Dense & sparse tensor/matrix;
Augmentation Data Representations P /)

compress, partition, cache
Data Preparation (e,g,

one-hot) HW & Infrastructure
Data Integration & Data

Cleaning
Improve accuracy vs. performance vs resource requirements - Specialization & Heterogeneity

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

Accelerators (GPUs, FPGAs, ASICs) E

Memory- vs Compute-intensive

Apps

Faults
Exec
Data

=
oQ

e CPU: dense/sparse, large mem, high mem-bandwidth, moderate

compute

e GPU: dense, small mem, slow PCI, very high mem-bandwidth /

compute

Graphics Processing Units (GPUs)

e Extensively used for deep learning training and scoring

e NVIDIA Volta: “tensor cores”

for 4x4 mm -> 64 2B FMA 1instruction

Accelerators (GPUs, FPGAs, ASICs)

Apps
La
Faults
Exec
Data

| Apps |
| Faults |
| Exec
| Data |
_HW

NVIDIA Volta (“tensor ~cores” for 4x4 mm -> 64 2B FMA
instruction)

Tensor cores

o Processing units introduced in Volta architecture

o Accelerate matrix multiplications and convolutions

4x4 mm

o Each tensor can multiply two 4x4 matrices.

FMA (Fused Multiply-Add) -dinstruction

o Multiplication of two numbers and directly adds the
result to another number in a single step.

2B (2-byte). Each value being multiplied (e.g. weights and

activations) is 16 bits (half-precision) -> Faster

computation and less memory bandwidth

Accelerators (GPUs, FPGAs, ASICs)

Field-Programmable Gate Arrays (FPGAs)

e Customizable HW accelerators for prefiltering,
compression, DL

e Examples: Microsoft Catapult/Brainwave Neural Processing
Units (NPUs)

Application-Specific Integrated Circuits (ASIC)

e Spectrum of chips: DL accelerators to computer vision
e Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel
NNP

Data Representation

| Apps |
o
. Iﬁiﬂﬂl
ML- vs DL-centric Systems o]
.
e ML: dense and Sparse matrices or tensors,
vec(Vienna) - vec(Austria)

different sparse formats (CSR, CSC, COO0), vec(Ttaly) = vec(Rome)
frames (heterogeneous data formats)
e DL: mostly dense tensors, embeddings
(dense representations of words or
tokens) for NLP

Data Representation

Data-Parallel Operations for ML

e Distributed matrices:

O

RDD <MatrixIndexes,MatrixBlock > (Spark) Nodel

Apps
Lang
Faults
Exec
Data

ae

Node2

partitioning, compression

e Data properties: distributed caching, l-\

Apps
Lang

Data Representation

Exec

A

Lossy Compression -> Acc/Perf-Tradeoff

e Sparsification (reduce non-zero values) .

e Quantization (reduce value domain 32 bit 7 zal
floats to 8-bit integers) 1

e New data types: Intel Flexpoint (mantissa,

exp)
o E.g: a 32 F Bits Integer can be represented as a 8-bit
mantissa with a shared exponent

H

,,,,,

[3
1

Execution Strategies

Batch Algorithm:
Compute large datasets in blocks (not one data p/time)

e Data-parallel Split data into chunks -> dist + compute

Apps
Lang
Faults

Data
HW

e Task-parallel Divide workload 1into tasks -> dist +
compute
e Different strategies to -implement physical operators
(e.g. “sum”) according to the architecture (local,
istributed)
SpEKe
£2 MAHOUT
Apache

el SystemML"

Execution Strategies

Mini-Batch Algorithms Smaller subset of data at a time ->
improve computing time & memory usage

Parameter Server: centralizes the model parameters (e.g.
NN weights) -> multiple nodes read and update them.

Data-parallel and model-parallel PS
Update strategies (e.g., async, sync, backup)
Data partitioning strategies (simple, featured-based)
Federated ML
o Data stays on local devices.
o Models are trained locally, and only the updated
parameters are sent to a central server.

PYTHRCH
¢ DED
Tensor i
CNTK

Parameter Servers

mm

“it o U ________ l _JT,

)| [| [)
o) (wa) | | ())| | 3] [

== |2

Workers

Execution Strategies

Lots of PS Decisions -> Acc/Perf-Tradeoff

e Configurations
O Number of worker nodes
O Batch size

O Update strategie and frequency

Apps
Lang
Faults

Data

a

Fault Tolerance & Resilience

—_——
RS = e
T T

T
1 10 100 1000 10000
Tasks

PiJob Falure)

Resilience Problem

e Increasing error rates at scale (soft/hard

mem/disk/net errors)
e Robustness for interruptions

Fault Tolerance & Resilience

Fault Tolerance 1in Large-Scale Computation

e Block replication (min=1, max=3) 1in distributed
file systems

e ECC; checksums for blocks, broadcast, shuffle

e Checkpointing
o MapReduce: all task outputs
o Spark/DL: on request

e Lineage-based recomputation for recovery 1in Spark

Language Abstractions =

&2 MAHOUT

Optimization Scope

e Eager Interpretation (no optimization)
e Lazy expression evaluation (some optimizations)

...... N BT
Sk
el SystemML”

e Program compilation (full optimization, difficult)

Optimization Objective

e Most common: minimize time under memory constraints.
e Multi-objective: min cost under time constraints,

min time under

accuracy constraints, max accuracy under time constraints

Apps

Language Abstractions s

Exec
—_—— — Data

Ao

Trend: Fusion and Code Generation

e Custom fused operations

e Examples: SystemDS, Weld, Taco, T
Sparsity-Exploiting Operator

| [vE T

non-
zeros 8
sum] X O log U + eps
[}
. |
[l SN L 1

Lang
Faults

Data

ML Applications

ML Algorithms (cost/benefit - time vs acc)

e Unsupervised/supervised; batch/mini-batch; first/second-order ML
e Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics in NoScope (time vs accuracy)

e Difference detectors / specialized
e models for “short-circuit evaluation”

[Credit: Daniel Kang‘17]

Landscape of ML Systems

#1 Language Abstraction

.‘a{%ti...'\" AHOUT Linear Algebra
Jlllla Programs

PYTORCH_ L . Computation Graphs

nsorfFloy

Algorithm Libraries

Operator Libraries

CUDNN

Spark Collections

?% H tUIl% Graphs

3

©2 MAHOUT SPArK” | Matrices
o ...
Ju||a + a NumPy Tensors
s‘p"‘o"'r TensorfFlow Fl'ames

#4 Data Types

#2 Execution Strategies

__________ I B Mt
I

+ CNTK

i (Modell-Parallel) : i I)

Task-Parallel

Constructs
Data-Parallel A Spark”
Operations &2 MAHOUT

Local (single node)

AAAAAA

Distributed Spark’

#3 Distribution

Distributed Parameter Servers

Background: Mini-batch ML Algorithms

Mini-batch ML Algorithms

ITterative ML algorithms, where each diteration only
uses a batch of rows to make the next model update
o Epochs over the entire batch

o Random sampling of the batch

For large and highly redundant training sets
Applies to almost all 1iterative, model-based ML
algorithms (LDA, reg., class., factor., DNN)

~ R - w

el Batch 2 [l

Epoch

Background: Mini-batch ML Algorithms

Statistical vs Hardware Efficiency (batch size)

e Statistical efficiency: more data points to achieve certain
accuracy

e Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at
different levels)

e Batched recommended size: 32 to 128 tuples

Background: Mini-batch DNN Training (LeNet)

Initialize W1-W4, bl-b4 [Yann LeCun, Leon Bottou, Yoshua
Initialize SGD w/ Nesterov momentum optimizer Bengio, and Patrick Haffner: Gradient-
iters = ceil(N / batch_size) Based Learning Applied to Document

Recognition, Proc of the IEEE 1998]

for(e in 1:epochs) {
for(i in 1:iters) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
layer 1: convl -> relul -> pooll 7
layer 2: conv2 -> relu2 -> pool2
layer 3: affine3 -> relu3 -> dropout NN Forward
layer 4: affined4 -> softmax Pass
outad = affine::forward(outd3, W4, b4)
probs = softmax::forward(outad)

layer 4: affined4 <- softmax
doutad = softmax::backward(dprobs, outa4) NN Backward
[doutd3, dw4, db4] = affine::backward(douta4, outr3, W4, ba)
layer 3: affine3 <- relu3 <- dropout Ir Pass

layer 2: conv2 <- relu2 <- pool2 - Gradients
layer 1: convl <- relul <- pooll

Optimize with SGD w/ Nesterov momentum W1-W4, bl-b4 7 Model

[W4, vW4] = sgd_nesterov::update(W4, dw4, 1r, mu, vWa) g

[b4, vb4] = sgd_nesterov::update(b4, db4, 1lr, mu, vba) Updates
} N

Overview Data-Parallel Parameter Servers

System Architecture

M: Parameter Servers
N: Workers
Optimal Coordinator

M Parameter Servers

——————————————————————————

W .. Model
AW .. Gradient

N Workers

Overview Data-Parallel Parameter Servers

System Architecture

e M: Parameter Servers
e N: Workers
e Optimal Coordinator

Key Techniques

e Data partitioning D -> workers Di

M Parameter Servers

W .. Model

l T AW .. Gradient

) (wz) | [) (v
() (wa) | | (w) (]
N Workers

(e.g., disjoint, reshuffling)

e Updated strategies (e.g., synchronous, asynchronous)
e Batch size strategies (small/large batches, hybrid methods)

History of Parameter Servers

1St Gen : Key/\’alue [Alexander J. Smola, Shravan

M. Narayanamurthy: An
Architecture for Parallel Topic
Models. PVLDB 2010]

e Distributed key-value store for parameter
. . [Jeffrey Dean et al.: Large Scale
istributed works.
exchange and synchronization s’
e Relatively high overhead

[Mu Li et al: Scaling Distributed
Machine Learning with the

2nd Gen: Classic Parameter Servers i
e Parameters as dense/sparse matrices

e Different update/consistency strategies

e Flexible configuration and fault tolerance

History of Parameter Servers

3rd Gen: Parameter Servers w/ improved data

communication

e Prefetching and range-based pull/push

e Lossy or lossless compression w/
compensations

Examples

e TensorFlow, PyTorch

[Jiawei Jiang, Bin Cui, Ce Zhang,
Lele Yu: Heterogeneity-aware
Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:
Accelerating Distributed Machine
Learning with Data Sketches.
SIGMOD 2018]

Basic Worker Algorithm (batch)

for(i 1in l:epochs) {
for(j in l:iterations) {
params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);

pushGradients(gradient);

} [Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
} NIPS 2012]

Update Strategies

Bulk Synchronous Parallel (BSP)
| Batch1 | | Batch2 | | Batch3 |
e Update model w/ collected gradients

| Batch1 || Batch2 | Batch3 |

e Barrier for N workers

Asynchronous Parallel (ASP) but, stale
model

¢ e

____Batch1 | Batch2] Batch3 |

e Update model for each gradient
e No barrier

Batch 1 Batch 2
Batch 1 Batch 2 Batch 3

Synchronous w/ Backup Workers

: | Batch1 | | Batch3 |
e Update model w/collected gradients

o Ba rraer -FO r N O -F N + b wor ke rs [Martin Abadi et al: TensorFlow: A System for

Large-Scale Machine Learning. OSDI 2016]

Intro to LLMs

Gemini Gemini GPT4 GPT-3.5 PalM2L Claude2 Inflect- Grok 1 LLAMA-2

MMLU 90.04% 79.13% 87.29% 70% 78.4% 78.5% 79.6% 73.0% 68.0%""
Multiple-choice questions CoT@32" CoT@s" CoT@a2 5-shot 5-shot Sabot CoT Sabet 5 shat
I 57 subjects (via API™*)
(professional &
) 83.7% 71.8% 86.4%
(Hendrycks et al, 20212) 5 ghoe S.shot S.shot
(reported)
GSMBK 94.4% 86.5% 92.0% 57.1% 80.0% 88.0% 81.4% 629% 56.8%
Grade-school math Maj1 @32 Majl @32 SFT & 5 shot 5-shot 0-shot Sahot S-shot 5-shoe
(Cobbe et al, 2021) S.shot CoT
MATH 53.2% 32.6% 52.9% 34.1% 34.4% — 34.8% 239% 13.5%
4 Math problems acruas 4t 4-shot 4 shot 4shat P #shoc 4shot
Options i s e SR
ines
(!mn al, 2021%) 50.3%
(Zheng et al.,
2023)
BIG-Bench-Hard 83.6% 75.0% 83.1% 66.6% 77.79% — - - 51.2%
L C h a t G P T Subwet of hard BiG-bench 3-shot 3.shot 3.shot 3.shot 3shot 3.shot
ﬁm-&‘rw (via API™) (via API™")
(Srivastava ot al, 2002)
L] L]
HumanEval 74.4% 67.7% 67.0% 48.1% —_ 70.0% 44.5% 63.2% 29.9%
e Google Gemini s e e o & LI T
(Chen et al, 2021) (reported)
Natural2Code 74.9% 69.6% 73.9% 62.3% — — — - -
Python code generation. 0-shot O-shot O-shot Oshot
(New held-out set with no (via APT™) (via AFI™)
e Lamda e
DROP 824 74.1 80.9 64.1 82.0 — — — —
Reading comprehension Variable Variable 3-shot 3shot Variable
& arichenetic. shoty shots (reported) shoes
(smetric: F1-score)
e Llama e
87.8% 84.7% 95.3% 85.5% 86.8% — 89.0% — 80.0%"**
m 10-shot 10-shot 10-shot 10-4bot 10-shot 10-shot
Cnmﬂpc multiple (reported)
e Gork e
WMT23 74.4 7.7 738 - 72.7 — — — —
Machine translation (mee- 1-shot (IT) 1-shot 1-shot 1-shat
: (': w:r;nm) e
jom et o,
e Mistral

°® E 'L _i za (l 9 6 6) https://blog.google/technology/ai/google-gemini-ai/#sundar-note

“It was the best of times, it was
" the worst of times”
All finite pieces of English text

-
Intro to LLMs | e

"911 how can | help you"

—_—— — «Call me lshmael” Distribution & over all conceivable pieces of English text.

Assigns probability Pr{w;wow,...w,] to every finite
opt'i ons word sequence WyW,W,...W,, (grammatical or not).

Qniirra: CNOK 224

e Next word prediction problem

e A probabilistic model that assign probability to every
finite sequence in e.g. English language

e Considering context, position, grammar and structure

e Sentence “the cat sat on the mat”

P(the cat sat on the map) = P(the)*P(cat|the) * P(sat|the cat) *P(on |the cat sat)x*P(the]|the

cat sat on) *P(mat|the cat sat on the)

LLM Training

Transformer based neural networks

EE==]. (]

Maseed Senterce A Masknd Sertercs B

e Y W b el

e Download ~10TB of text. s RS

e Get a cluster of ~6,000 GPUs. g A o AN Piand f Fnance

e (Compress the text into a neural PR S v tepiien Ty ST

e network, pay ~$2M, wait ~12 days. Payingofthe nationaldebt wil e Ape devsopment o ihouse

® Obtain base model. oot oon gt 1 s ey
Fine Tuning

e Write labeling instructions ANGUAGE MODELS

e Hire people (or use scale.ai!), collect 100K : e

e high quality ideal Q&A responses, and/or

e comparisons.

e Finetune base model on this data ~1 day.

e Obtain assistant model.

e Run a lot of evaluations.

https://ai.stanford.edu/blog/understanding-incontext/
https://ai.stanford.edu/blog/understanding-incontext/
http://www.youtube.com/watch?v=zjkBMFhNj_g

LLM Parameters

Transformer based neural networks

sia)awesed [apoyy abenbueq

Unit : billion Google OpenAl Meta Microsoft LLMs split into various categories based on size

550 A PalM-2
- / N
= / N\ 3408
\ Gargantuan
350 4 q _ LLM
= : - o GPT-4 undisclosed
/\ Close to GPT-3
150 A \C
\. LLaMA-2
= il 708 Medium
LLaMA /
e 658 | i
Phi-1
- LLaMA o Small
78 ~. A LLaMA-2 LLM
0.0001 ' 78

o
2018 2019 2020 2021 2022 2023 2024

Source: Compiled by DIGITIMES Research, Aug. 2023
https://www.digitimes.com/news/a20231221VL202/2024-outlook-ai-edge-ai-llm.html

Q & A and Exam Preparation

Multiple choice question

e Which of the following best describes the concept of sparsification in

Machine Learning?

a. Reducing the number of data points in a dataset by removing duplicates.

b. Transforming a dense representation of data into a sparse one, where
many values are zero.

c. Increasing the density of data by adding synthetic samples to -improve
accuracy.

d. Replacing categorical features with numerical representations for model

compatibility.

Open questions

Message-oriented Middleware

o Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once
and Exactly-Once, and 1indicate which of them require persistent storage

before sending.

Open questions

Message-oriented Middleware

o Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once
and Exactly-Once, and 1indicate which of them require persistent storage

before sending.

“hame | oewrpton | Songe

At-Most-Once Send and forget, never sent message twice (even on No
failures)

At-Least-Once Store and forward, replay stream from Yes
(acknowledged) checkpoint

Exactly-Once Store and forward, replay stream from Yes
(acknowledged) checkpoint, transactional delivery

Open questions

Schema Matching / Entity Linking

e Explain the phases of a typical Entity Resolution Pipeline with example

techniques for the individual phases.

Open questions

Schema Matching / Entity Linking

e Explain the phases of a typical Entity Resolution Pipeline with example

techniques for the -individual phases.

|_ Prepare Blocking/
Data Sorting

m & il
m m/m (ol r2, r7
E an

m m i B3 b2 nrs, r6, 8

Stream Processing

a. Back Pressure

m Graceful handling of overload w/o data loss -*n*.*n*[ﬂl*a*

3ms 9ms 2ms

" Slow down sources Self-adjusting operator scheduling

m E.g., block'ing queues Pipeline runs at rate of slowest op

b. Load Shedding
m Random-sampling-based load shedding
m Relevance-based load shedding

m Summary-based load shedding (synopses)

Summary and Q&A

Summary and Q&A

e Summary and Q&A

o

o

o

o

Landscape of ML Systems
Distributed Parameter Servers
Large Language Models

Q&A and Exam Preparation

e Oral Exam

o

Starting [Jan 30]

e Written Exam [Feb 07]

Vielen Dank!

(please participate in the course evaluation)

