Data Integration and Large Scale Analysis

Slides credit: Matthias Boehm - Shafaq Siddiqi

12- Distributed ML Systems

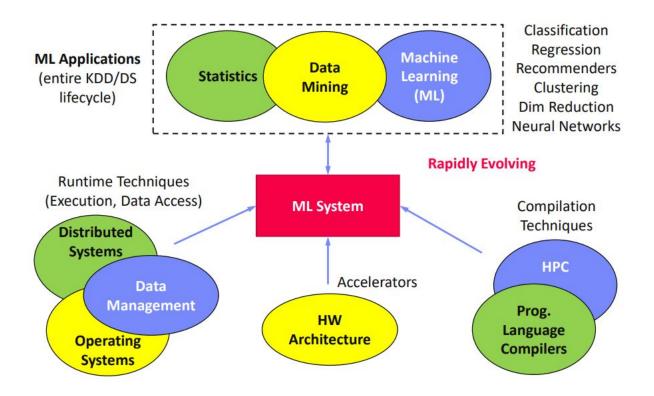
Lucas Iacono. PhD. - 2025

Agenda

- Landscape of ML Systems
- Distributed Parameter Servers
- Large Language Models at HPC
- Q&A and Exam Preparation

Landscape of ML Systems

What is an ML System?

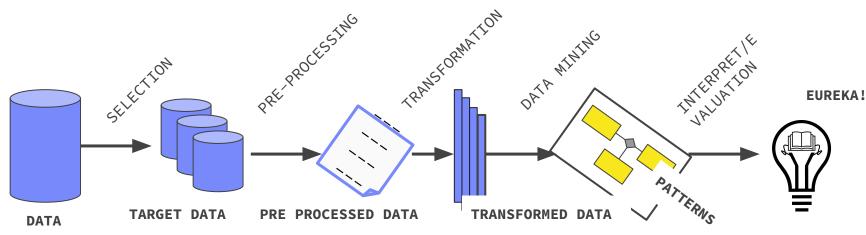


From KDD to the Al Lifecycle

Classic KDD (Knowledge Discovery in Databases)

Descriptive (association rules, clustering) and predictive

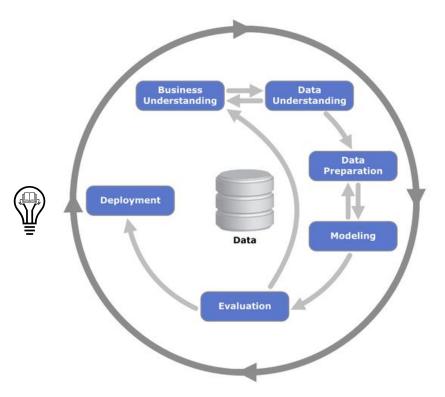
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. *Communications of the ACM*, *39*(11), 27-34.



From KDD to the Al Lifecycle

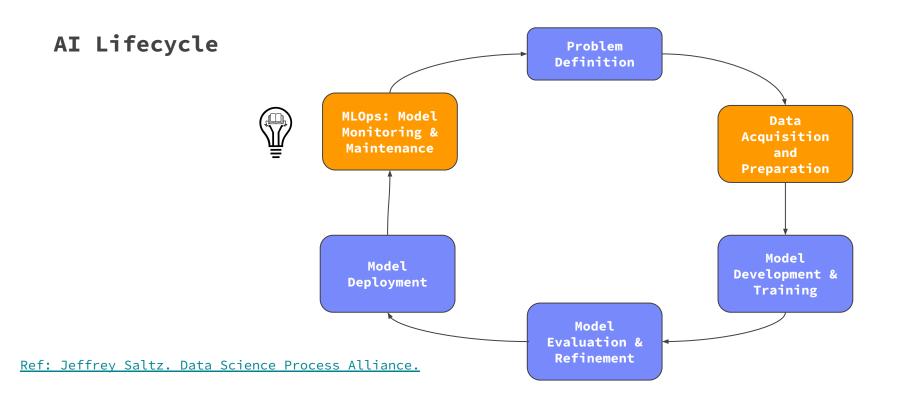
CRISP-DM (Cross-Industry Standard Process for Data Mining)

What's new? Business Understanding and Deployment (A business perspective)



Source: Statistik Dresden

From KDD to the Al Lifecycle

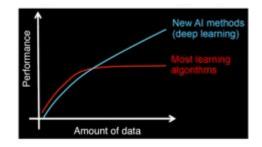


Improved Algorithms and Models

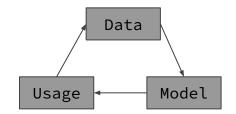
- Success across data and application domains
- (e.g., health care, finance, transport, production)
- More complex models which leverage large data

Availability of Large Data Collections

- Increasing automation and monitoring data
- (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation



Feedback Loop



Driving Factors for ML

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks, ML systems, and vendor-provides libraries

_ _ _

Training

ML Apps & Algorithms

Supervised, unsupervised, RL, libs, AutoML

Training

ML Apps & Algorithms

Language Abstractions

Supervised, unsupervised, RL, libs, AutoML

Eager interpretation, lazy evaluation, prog. compilation

Training

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Supervised, unsupervised, RL, libs, AutoML

Eager interpretation, lazy evaluation, prog. compilation

Approximation, lineage, checkpointing, checksums, ECC

Training

ML Apps & Algorithms	Supervised, unsupervised, RL, libs, AutoML
Language Abstractions	Eager interpretation, lazy evaluation, prog. compilation
Fault Tolerance	Approximation, lineage, checkpointing, checksums, ECC
Execution Strategies	Local, distributed, cloud (data, task, parameter server)

Training

ML Apps & Algorithms	Si L
Language Abstractions	E: e'
Fault Tolerance	A c
Execution Strategies	L(
Data Representations	D

Supervised, unsupervised, RL, libs, AutoML

Eager interpretation, lazy evaluation, prog. compilation

Approximation, lineage, checkpointing, checksums, ECC

Local, distributed, cloud (data, task, parameter server)

Dense & sparse tensor/matrix; compress, partition, cache

_

Training

ML Apps & Algorithms	Supervis libs, Au
Language Abstractions	Eager in evaluati
Fault Tolerance	Approxim checkpoi
Execution Strategies	Local, d (data, t
Data Representations	Dense & compress
HW & Infrastructure	CPUs, NU ASTCs R

Supervised, unsupervised, RL, libs, AutoML

Eager interpretation, lazy evaluation, prog. compilation

Approximation, lineage, checkpointing, checksums, ECC

Local, distributed, cloud (data, task, parameter server)

Dense & sparse tensor/matrix; compress, partition, cache

CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM

Training

Deployment & Scoring	ML Apps & Algorithms	Supervised, unsupervised, RL, libs, AutoML
Validation & Debugging	Language Abstractions	Eager interpretation, lazy evaluation, prog. compilation
Hyper-parameter tuning	Fault Tolerance	Approximation, lineage, checkpointing, checksums, ECC
Model and Feature Selection	Execution Strategies	Local, distributed, cloud (data, task, parameter server)
Data Programming and Augmentation	Data Representations	Dense & sparse tensor/matrix; compress, partition, cache
Data Preparation (e,g, one-hot)	HW & Infrastructure	CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM
Data Integration & Data Cleaning Improve accuracy vs. perfo	rmance vs resource requirements 📒	Specialization & Heterogeneit

Accelerators (GPUs, FPGAs, ASICs)

Memory- vs Compute-intensive

- CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute

Graphics Processing Units (GPUs)

- Extensively used for deep learning training and scoring
- NVIDIA Volta: "tensor cores" for 4x4 mm -> 64 2B FMA instruction

Accelerators (GPUs, FPGAs, ASICs)

NVIDIA Volta ("tensor cores" for 4x4 mm -> 64 2B FMA instruction)

Apps Lang Faults

Exec Data HW

- Tensor cores
 - Processing units introduced in Volta architecture
 - Accelerate matrix **multiplications** and **convolutions**
- 4x4 mm
 - Each tensor can multiply two 4x4 matrices.
- FMA (Fused Multiply-Add) instruction
 - Multiplication of two numbers and directly adds the result to another number in a single step.
- 2B (2-byte). Each value being multiplied (e.g. weights and activations) is 16 bits (half-precision) -> Faster computation and less memory bandwidth

Accelerators (GPUs, FPGAs, ASICs)

Field-Programmable Gate Arrays (FPGAs)

- Customizable HW accelerators for prefiltering, compression, DL
- Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

Application-Specific Integrated Circuits (ASIC)

- Spectrum of chips: DL accelerators to computer vision
- Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

Data Representation

ML- vs DL-centric Systems

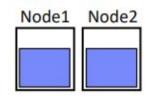
- ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous data formats)
 - **DL:** mostly **dense tensors**, **embeddings** (dense representations of words or tokens) for NLP


```
vec(Vienna) - vec(Austria)
vec(Italy) = vec(Rome)
```

Data Representation

Data-Parallel Operations for ML

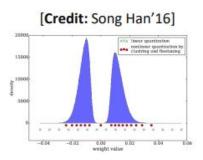
- Distributed matrices:
 - o RDD <MatrixIndexes,MatrixBlock > (Spark)
- Data properties: distributed caching, partitioning, compression



Data Representation

Lossy Compression -> Acc/Perf-Tradeoff

- Sparsification (reduce non-zero values)
- Quantization (reduce value domain 32 bit floats to 8-bit integers)
- New data types: Intel Flexpoint (mantissa, exp)
 - E.g: a 32 F Bits Integer can be represented as a 8-bit mantissa with a shared exponent



Execution Strategies

Batch Algorithm:

Lang Faults Exec Data HW

Apps

Compute large datasets in **blocks** (not one data p/time)

- **Data-parallel** Split data into chunks -> dist + compute
- Task-parallel Divide workload into tasks -> dist + compute
- **Different** strategies to implement **physical operators** (e.g. "sum") according to the architecture (local, istributed)

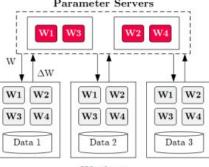
Execution Strategies

Mini-Batch Algorithms Smaller subset of data at a time -> improve computing time & memory usage

Parameter Server: centralizes the model parameters (e.g. NN weights) -> multiple nodes read and update them.

- Data-parallel and model-parallel PS
- Update strategies (e.g., async, sync, backup)
- Data partitioning strategies (simple, featured-based)
- Federated ML
 - Data stays on local devices.
 - Models are trained locally, and only the updated parameters are sent to a central server.

Apps Lang



Execution Strategies

Lots of PS Decisions -> Acc/Perf-Tradeoff

Apps Lang Faults

> Exec Data

HW

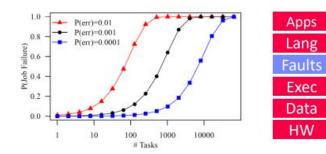
• Configurations

_ _ _

- \circ $\;$ Number of worker nodes
- Batch size
- \circ $\,$ Update strategie and frequency

Fault Tolerance & Resilience

Resilience Problem



- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for interruptions

Fault Tolerance & Resilience

Fault Tolerance in Large-Scale Computation

- Block **replication** (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing
 - MapReduce: all task outputs
 - Spark/DL: on request
- Lineage-based recomputation for recovery in Spark

Language Abstractions

Optimization Scope

- Eager Interpretation (**no optimization**)
- Lazy expression evaluation (**some optimizations**)
- Program compilation (full optimization, difficult)

Optimization Objective

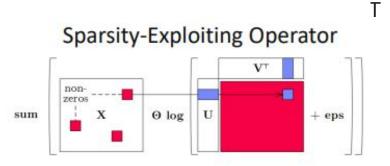
- Most common: minimize time under memory constraints.
- Multi-objective: min cost under time constraints, min time under accuracy constraints, max accuracy under time constraints

Language Abstractions

Trend: Fusion and Code Generation

• Custom fused operations

• Examples: SystemDS, Weld, Taco,



ML Applications

ML Algorithms (cost/benefit - time vs acc)

- Unsupervised/supervised; batch/mini-batch; first/second-order ML
- Mini-batch DL: variety of NN architectures and SGD optimizers

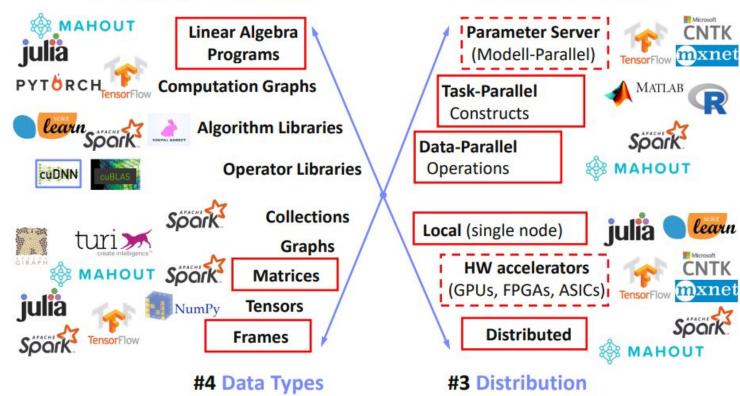
Specialized Apps: Video Analytics in NoScope (time vs accuracy)

- Difference detectors / specialized
- models for "short-circuit evaluation"

[Credit: Daniel Kang'17]

Landscape of ML Systems

#1 Language Abstraction



#2 Execution Strategies

Distributed Parameter Servers

Background: Mini-batch ML Algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a **batch of rows** to make the next model update
 - Epochs over the entire batch
 - Random sampling of the batch
- For **large** and highly redundant training sets
- Applies to **almost all iterative**, model-based ML algorithms (LDA, reg., class., factor., DNN)

	$\begin{array}{rrr} & & \\ \hline \\ \hline$
Data	Epoch

Background: Mini-batch ML Algorithms

Statistical vs Hardware Efficiency (batch size)

- Statistical efficiency: more data points to achieve certain accuracy
- Hardware efficiency: number of independent computations to achieve high hardware utilization (parallelization at different levels)
- Batched recommended size: 32 to 128 tuples

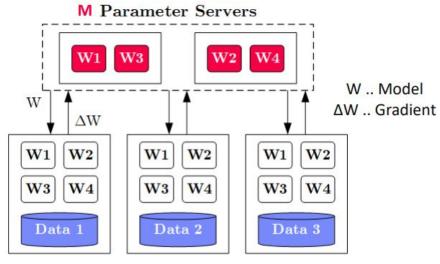
Background: Mini-batch DNN Training (LeNet)

```
[Yann LeCun, Leon Bottou, Yoshua
# Initialize W1-W4, b1-b4
                                                        Bengio, and Patrick Haffner: Gradient-
# Initialize SGD w/ Nesterov momentum optimizer
                                                         Based Learning Applied to Document
iters = ceil(N / batch size)
                                                           Recognition, Proc of the IEEE 1998]
for( e in 1:epochs ) {
   for( i in 1:iters ) {
      X batch = X[((i-1) * batch size) \% N + 1:min(N, beg + batch size - 1),]
      y batch = Y[((i-1) * batch size) \% N + 1:min(N, beg + batch size - 1),]
      ## layer 1: conv1 -> relu1 -> pool1
      ## layer 2: conv2 -> relu2 -> pool2
                                                                              NN Forward
      ## layer 3: affine3 -> relu3 -> dropout
      ## layer 4: affine4 -> softmax
                                                                                  Pass
      outa4 = affine::forward(outd3, W4, b4)
      probs = softmax::forward(outa4)
      ## laver 4: affine4 <- softmax</pre>
      douta4 = softmax::backward(dprobs, outa4)
                                                                             NN Backward
      [doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
                                                                                  Pass
      ## laver 3: affine3 <- relu3 <- dropout
                                                                              → Gradients
      ## layer 2: conv2 <- relu2 <- pool2
      ## layer 1: conv1 <- relu1 <- pool1</pre>
      # Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
                                                                                 Model
      [W4, vW4] = sgd nesterov::update(W4, dW4, lr, mu, vW4)
                                                                                Updates
      [b4, vb4] = sgd nesterov::update(b4, db4, lr, mu, vb4)
3
```

Overview Data-Parallel Parameter Servers

System Architecture

- M: Parameter Servers
- N: Workers
- Optimal Coordinator

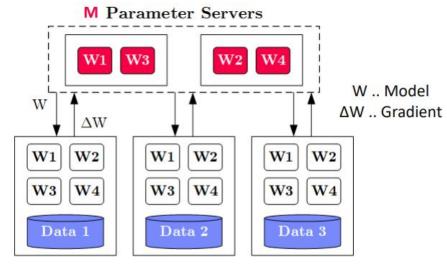


N Workers

Overview Data-Parallel Parameter Servers

System Architecture

- M: Parameter Servers
- N: Workers
- Optimal Coordinator



Key Techniques

N Workers

- Data partitioning D -> workers Di (e.g., disjoint, reshuffling)
- Updated strategies (e.g., synchronous, asynchronous)
- Batch size strategies (small/large batches, hybrid methods)

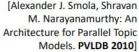
History of Parameter Servers

1st Gen: Key/Value

- **Distributed key-value** store for parameter exchange and synchronization
- Relatively high overhead

2nd Gen: Classic Parameter Servers

- Parameters as dense/sparse matrices
- Different update/consistency strategies
- Flexible configuration and fault tolerance



ale

[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

[Mu Li et al: Scaling Distributed Machine Learning with the Parameter Server. **OSDI 2014**]

L÷			

History of Parameter Servers

3rd Gen: Parameter Servers w/ improved data communication

- Prefetching and range-based pull/push
- Lossy or lossless compression w/ compensations

Examples

• TensorFlow, PyTorch

[Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu: Heterogeneity-aware Distributed Parameter Servers. SIGMOD 2017]

[Jiawei Jiang et al: SketchML: Accelerating Distributed Machine Learning with Data Sketches. SIGMOD 2018]

-		
		-
2.00		
1.0		
1.00		
1.00		
1.0		
100		
-		
-		

Basic Worker Algorithm (batch)

}

```
for( i in 1:epochs ) {
   for( j in 1:iterations ) {
       params = pullModel(); # W1-W4, b1-b4 lr, mu
       batch = getNextMiniBatch(data, j);
       gradient = computeGradient(batch, params);
       pushGradients(gradient);
```


Update Strategies

Bulk Synchronous Parallel (BSP)

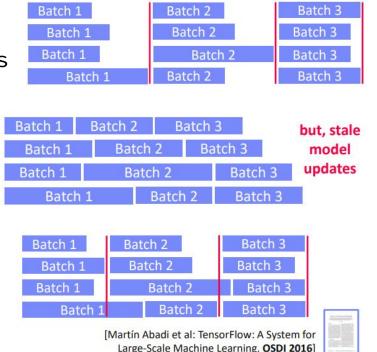
- Update model w/ collected gradients
- Barrier for N workers

Asynchronous Parallel (ASP)

- Update model for each gradient
- No barrier

Synchronous w/ Backup Workers

- Update model w/collected gradients
- Barrier for N of N+b workers



Intro to LLMs

Intro to LLMs

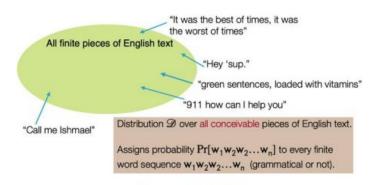
Options

- ChatGPT
- Google Gemini
- Lamda
- Llama
- Gork
- Mistral
- Eliza (1966)

	Gemini Ultra	Gemini Pro	GPT-4	GPT-3.5	PaLM 2-L	Claude 2	Inflect- ion-2	Grok 1	LLAMA-2
MMLU Multiple-choice questions in 57 subjects (professional &	90.04% CoT@32*	79.13% CoT@8*	87.29% CoT@32 (via API**)	70% 5-shot	78.4% 5-shot	78.5% 5-shot CoT	79.6% 5-shot	73.0% 5-shot	68.0%***
academic) (Hendrycks et al., 2021a)	83.7% 5-shot	71.8% 5-shot	86.4% 5-shot (reported)						
GSM8K Grade-school math (Cobbe et al., 2021)	94.4% Maj1@32	86.5% Maj1@32	92.0% SFT & 5-shot CoT	57.1% 5-shot	80.0% 5-shot	88.0% 0-shot	81.4% 8-shot	62.9% 8-shot	56.8% 5-shot
MATH Math problems across 5 difficulty levels &	53.2% 4-shot	32.6% 4-shot	52.9% 4-shot (via API**)	34.1% 4-shot (via API**)	34.4% 4-shot	-	34.8%	23.9% 4-shot	13.5% 4-shot
7 subdisciplines (Hendrycks et al., 2021b)			50.3% (Zheng et al., 2023)						
BIG-Bench-Hard Subset of hard BIG-bench tasks written as CoT prob- lems (Srivastava et al., 2022)	83.6% 3-shot	75.0% 3-shot	83.1% 3-shot (via API**)	66.6% 3-shot (via API**)	77.7% 3-shot	_	3 <u>-11</u>	-	51.2% 3-shot
HumanEval Python coding tasks (Chen et al., 2021)	74.4% 0-shot (IT)	67.7% 0-shot (II)	67.0% 0-shot (reported)	48.1% 0-shot	-	70.0% 0-shot	44.5% 0-shot	63.2% 0-shot	29.9% 0-shot
Natural2Code Python code generation. (New held-out set with no leakage on web)	74.9% 0-shot	69.6% 0-shot	73.9% 0-shot (via API**)	62.3% 0-shot (via API**)	-			-	-
DROP Reading comprehension & arithmetic. (metric: F1-score) (Dua et al., 2019)	82.4 Variable shots	74.1 Variable shots	80.9 3-shot (reported)	64.1 3-shot	82.0 Variable shots	-	-	-	-
HellaSwag (validation set) Common-sense multiple choice questions (Zellers et al., 2019)	87.8% 10-shot	84.7% 10-shot	95.3% 10-shot (reported)	85.5% 10-shot	86.8% 10-shot	_	89.0% 10-shot	-	80.0%***
WMT23 Machine translation (met- ric: BLEURT) (Tom et al., 2023)	74.4 1-shot (IT)	71.7 1-shot	73.8 1-shot (via API**)	-	72.7 1-shot	-	-	-	-

https://blog.google/technology/ai/google-gemini-ai/#sundar-note

Intro to LLMs



Source: COS 324

- Next word prediction problem
- A probabilistic model that assign probability to every finite sequence in e.g. English language
- Considering context, position, grammar and structure
- Sentence "the cat sat on the mat"

P(the cat sat on the map) = P(the)*P(cat|the) * P(sat|the cat) *P(on |the cat sat)*P(the|the cat sat on) *P(mat|the cat sat on the)

LLM Training

Transformer based neural networks

Pre-training (expensive)

- Download ~10TB of text.
- Get a cluster of ~6,000 GPUs.
- Compress the text into a neural
- network, pay ~\$2M, wait ~12 days.
- Obtain base model.

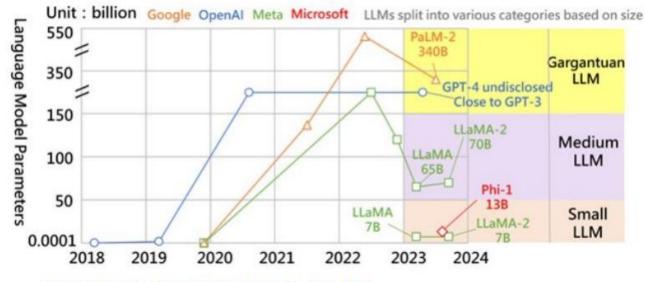
Fine Tuning

- Write labeling instructions
- Hire people (or use scale.ai!), collect 100K
- high quality ideal Q&A responses, and/or
- comparisons.
- Finetune base model on this data ~1 day.
- Obtain assistant model.
- Run a lot of evaluations.

Maiked Sentence A and 8 Peir Unideed Sentence A and 8 Peir Pre-training	Guestion Areaser Par Fine-Tuning
Circulation revenue has increased by 5%	Circulation revenue has increased b
in Finland. // Positive Panostaja did not disclose the purchase price. // Neutral	5% in Finland. // Finance They defeated in the NFC Championship Game. // Sports
Paying off the national debt will be extremely painful. // Negative	Apple development of in-house chips. // Tech
The company anticipated its operating profit to improve. //	The company anticipated its operation profit to improve. //
LM	LM
INTRO TO LARGE L	ANGUAGE MODELS

LLM Parameters

Transformer based neural networks



Source: Compiled by DIGITIMES Research, Aug. 2023 https://www.digitimes.com/news/a20231221VL202/2024-outlook-ai-edge-ai-llm.html

Q & A and Exam Preparation

Multiple choice question

_ _ _

- Which of the following best describes the concept of sparsification in Machine Learning?
 - a. Reducing the number of data points in a dataset by removing duplicates.
 - Transforming a dense representation of data into a sparse one, where many values are zero.
 - c. Increasing the density of data by adding synthetic samples to improve accuracy.
 - d. Replacing categorical features with numerical representations for model compatibility.

_ _ _

Message-oriented Middleware

 Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once and Exactly-Once, and indicate which of them require persistent storage before sending.

Message-oriented Middleware

 Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once and Exactly-Once, and indicate which of them require persistent storage before sending.

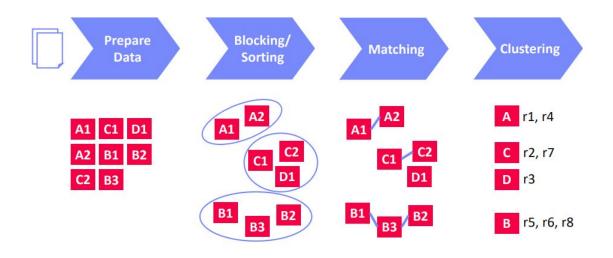
Name	Description	Storage
At-Most-Once	Send and forget, never sent message twice (even on failures)	No
At-Least-Once	Store and forward, replay stream from (acknowledged) checkpoint	Yes
Exactly-Once	Store and forward, replay stream from (acknowledged) checkpoint, transactional delivery	Yes

Schema Matching / Entity Linking

• Explain the phases of a typical Entity Resolution Pipeline with example techniques for the individual phases.

Schema Matching / Entity Linking

• Explain the phases of a typical Entity Resolution Pipeline with example techniques for the individual phases.



Stream Processing

a. Back Pressure

- Graceful handling of overload w/o data loss
- Slow down sources
- E.g., blocking queues
- b. Load Shedding
 - Random-sampling-based load shedding
 - Relevance-based load shedding
 - Summary-based load shedding (synopses)

Self-adjusting operator scheduling Pipeline runs at rate of slowest op

Summary and Q&A

Summary and Q&A

• Summary and Q&A

- \circ $\;$ Landscape of ML Systems $\;$
- Distributed Parameter Servers
- Large Language Models
- Q&A and Exam Preparation

• Oral Exam

_ _ _

- Starting [Jan 30]
- Written Exam [Feb 07]

Vielen Dank! (please participate in the course evaluation)