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What is an ML System?
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From KDD to the Al Lifecycle

The KDD Process
for Extracting Useful
Knowledge from

Classic KDD (Knowledge Discovery +in Databases)

Descriptive (association rules, clustering) and predictive
Fayyad, U., Piatetsky-Shapiro,
G., & Smyth, P. (1996). The
KDD process for extracting
useful knowledge from volumes
of data. Communications of the
ACM, 39(11), 27-34.
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https://dl.acm.org/doi/10.1145/240455.240464
https://dl.acm.org/doi/10.1145/240455.240464

From KDD to the Al Lifecycle

CRISP-DM (Cross-Industry Standard
Process for Data Mining)

Business e . Data
Understanding Bl Understanding

What’s new? Business Understanding and
Deployment (A business perspective)

Data
Preparation

§ |
3

Deployment
3 \ Modeling

Data

Source: Statistik Dresden


https://statistik-dresden.de/crisp-dm-ein-standard-prozess-modell-fur-data-mining/

From KDD to the Al Lifecycle

AI L1 fecyC1e Problem

Definition

MLOps: Model Data
Monitoring & Acquisition
= Maintenance and

Preparation

Model
Development &
Training

Model
Deployment

Model
Evaluation &
Refinement

Ref: Jeffrey Saltz. Data Science Process Alliance.



https://www.datascience-pm.com/ai-lifecycle/

Credit: Andrew Ng’ 14

Driving Factors for ML

o
o
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Improved Algorithms and Models

Amount of data

e Success across data and application domains

o (e.g., health care, finance, transport, Feedback Loop
production)
e More complex models which leverage large data /// pata \\
Availability of Large Data Collections

Usage Model

e Increasing automation and monitoring data
e (simplified by cloud computing & services)
e Feedback loops, data programming/augmentation



Driving Factors for ML

HW & SW Advancements

e Higher performance of hardware and
infrastructure (cloud)

e Open-source large-scale computation
frameworks, ML systems, and
vendor-provides libraries




Stack of ML Systems
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Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML

Language Abstractions Fager interpretation, lazy
evaluation, prog. compilation
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Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML
Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Fault Tolerance checkpointing, checksums, ECC

. . Local, distributed, cloud
Execution Strategies (data, task, parameter server)

Dense & sparse tensor/matrix;

Data Representations compress, partition, cache



Stack of ML Systems

Training

- Supervised, unsupervised, RL,
ML Apps & Algorithms 1ibs, AutoML
Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Fault Tolerance checkpointing, checksums, ECC

. . Local, distributed, cloud
Execution Strategies (data, task, parameter server)

Dense & sparse tensor/matrix;

Data Representations compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

HW & Infrastructure



Stack of ML Systems

Training

Supervised, unsupervised, RL,

Deployment & Scoring ML Apps & Algorithms Libs. AutoML
)

Validation & Debugging Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
Hyper-parameter tuning Fault Tolerance checkpointing, checksums, ECC

. . . Local, distributed, cloud
Model and Feature Selection Execution Strategies (data, task, parameter server)

Data Programming and

o Dense & sparse tensor/matrix;
Augmentation Data Representations P / )

compress, partition, cache
Data Preparation (e,g,

one-hot) HW & Infrastructure
Data Integration & Data

Cleaning
Improve accuracy vs. performance vs resource requirements - Specialization & Heterogeneity

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM



Accelerators (GPUs, FPGAs, ASICs) E

Memory- vs Compute-intensive

Apps

Faults
Exec
Data

=
oQ

e CPU: dense/sparse, large mem, high mem-bandwidth, moderate

compute

e GPU: dense, small mem, slow PCI, very high mem-bandwidth /

compute

Graphics Processing Units (GPUs)

e Extensively used for deep learning training and scoring

e NVIDIA Volta: “tensor cores”

for 4x4 mm -> 64 2B FMA 1instruction



Accelerators (GPUs, FPGAs, ASICs)

Apps
La
Faults
Exec
Data

| Apps |
| Faults |
| Exec
| Data |
_HW

NVIDIA Volta (“tensor ~cores” for 4x4 mm -> 64 2B FMA
instruction)

Tensor cores

o Processing units introduced in Volta architecture

o Accelerate matrix multiplications and convolutions

4x4 mm

o Each tensor can multiply two 4x4 matrices.

FMA (Fused Multiply-Add) -dinstruction

o Multiplication of two numbers and directly adds the
result to another number in a single step.

2B (2-byte). Each value being multiplied (e.g. weights and

activations) is 16 bits (half-precision) -> Faster

computation and less memory bandwidth




Accelerators (GPUs, FPGAs, ASICs)

Field-Programmable Gate Arrays (FPGAs)

e Customizable HW accelerators for prefiltering,
compression, DL

e Examples: Microsoft Catapult/Brainwave Neural Processing
Units (NPUs)

Application-Specific Integrated Circuits (ASIC)

e Spectrum of chips: DL accelerators to computer vision
e Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel
NNP



Data Representation

| Apps |
o
. Iﬁiﬂﬂl
ML- vs DL-centric Systems o]
.
e ML: dense and Sparse matrices or tensors,
vec(Vienna) - vec(Austria)

different sparse formats (CSR, CSC, COO0), vec(Ttaly) = vec(Rome)
frames (heterogeneous data formats)
e DL: mostly dense tensors, embeddings
(dense representations of words or
tokens) for NLP



Data Representation

Data-Parallel Operations for ML

e Distributed matrices:

O

RDD <MatrixIndexes,MatrixBlock > (Spark) Nodel

Apps
Lang
Faults
Exec
Data

ae

Node2

partitioning, compression

e Data properties: distributed caching, l-\



Apps
Lang

Data Representation

Exec

A

Lossy Compression -> Acc/Perf-Tradeoff

e Sparsification (reduce non-zero values) .

e Quantization (reduce value domain 32 bit 7 zal
floats to 8-bit integers) 1

e New data types: Intel Flexpoint (mantissa,

exp)
o E.g: a 32 F Bits Integer can be represented as a 8-bit
mantissa with a shared exponent

H

,,,,,

[ 3
1



Execution Strategies

Batch Algorithm:
Compute large datasets in blocks (not one data p/time)

e Data-parallel Split data into chunks -> dist + compute

Apps
Lang
Faults

Data
HW

e Task-parallel Divide workload 1into tasks -> dist +
compute
e Different strategies to -implement physical operators
(e.g. “sum”) according to the architecture (local,
istributed)
SpEKe
£2 MAHOUT
Apache

el  SystemML"



Execution Strategies

Mini-Batch Algorithms Smaller subset of data at a time ->
improve computing time & memory usage

Parameter Server: centralizes the model parameters (e.g.
NN weights) -> multiple nodes read and update them.

Data-parallel and model-parallel PS
Update strategies (e.g., async, sync, backup)
Data partitioning strategies (simple, featured-based)
Federated ML
o Data stays on local devices.
o Models are trained locally, and only the updated
parameters are sent to a central server.

PYTHRCH
¢ DED
Tensor i
CNTK

Parameter Servers

__________________________
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Execution Strategies

Lots of PS Decisions -> Acc/Perf-Tradeoff

e Configurations
O Number of worker nodes
O Batch size

O Update strategie and frequency

Apps
Lang
Faults

Data

a



Fault Tolerance & Resilience

—_——
RS = e
T T

T
1 10 100 1000 10000
# Tasks

PiJob Falure)

Resilience Problem

e Increasing error rates at scale (soft/hard

mem/disk/net errors)
e Robustness for interruptions



Fault Tolerance & Resilience

Fault Tolerance 1in Large-Scale Computation

e Block replication (min=1, max=3) 1in distributed
file systems

e ECC; checksums for blocks, broadcast, shuffle

e Checkpointing
o MapReduce: all task outputs
o Spark/DL: on request

e Lineage-based recomputation for recovery 1in Spark



Language Abstractions =

&2 MAHOUT

Optimization Scope

e Eager Interpretation (no optimization)
e Lazy expression evaluation (some optimizations)

...... N BT
Sk
el SystemML”

e Program compilation (full optimization, difficult)

Optimization Objective

e Most common: minimize time under memory constraints.
e Multi-objective: min cost under time constraints,

min time under

accuracy constraints, max accuracy under time constraints



Apps

Language Abstractions s

Exec
—_—— — Data

Ao

Trend: Fusion and Code Generation

e Custom fused operations

e Examples: SystemDS, Weld, Taco, T
Sparsity-Exploiting Operator

| [ vE T

non-
zeros 8
sum ] X O log U + eps
[}
. |
[l SN L 1




Lang
Faults

Data

ML Applications

ML Algorithms (cost/benefit - time vs acc)

e Unsupervised/supervised; batch/mini-batch; first/second-order ML
e Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics in NoScope (time vs accuracy)

e Difference detectors / specialized
e models for “short-circuit evaluation”

[Credit: Daniel Kang‘17]



Landscape of ML Systems

#1 Language Abstraction

.‘a{%ti...'\" AHOUT Linear Algebra
Jlllla Programs

PYTORCH_ L . Computation Graphs

nsorfFloy

Algorithm Libraries

Operator Libraries

CUDNN

Spark Collections

?% H tUIl% Graphs

3

©2 MAHOUT SPArK” | Matrices
o ...
Ju||a + a NumPy  Tensors
s‘p"‘o"'r TensorfFlow Fl'ames

#4 Data Types

#2 Execution Strategies

__________ I B Mt
I

+ CNTK

i (Modell-Parallel) : i I )

Task-Parallel

Constructs
Data-Parallel A Spark”
Operations &2 MAHOUT

Local (single node)

AAAAAA

Distributed Spark’

#3 Distribution



Distributed Parameter Servers




Background: Mini-batch ML Algorithms

Mini-batch ML Algorithms

ITterative ML algorithms, where each diteration only
uses a batch of rows to make the next model update
o Epochs over the entire batch

o Random sampling of the batch

For large and highly redundant training sets
Applies to almost all 1iterative, model-based ML
algorithms (LDA, reg., class., factor., DNN)

~ R - w

el Batch 2 [l

Epoch



Background: Mini-batch ML Algorithms

Statistical vs Hardware Efficiency (batch size)

e Statistical efficiency: more data points to achieve certain
accuracy

e Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at
different levels)

e Batched recommended size: 32 to 128 tuples



Background: Mini-batch DNN Training (LeNet)

# Initialize W1-W4, bl-b4 [Yann LeCun, Leon Bottou, Yoshua
# Initialize SGD w/ Nesterov momentum optimizer Bengio, and Patrick Haffner: Gradient-
iters = ceil(N / batch_size) Based Learning Applied to Document

Recognition, Proc of the IEEE 1998]

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
## layer 1: convl -> relul -> pooll 7
## layer 2: conv2 -> relu2 -> pool2
## layer 3: affine3 -> relu3 -> dropout NN Forward
## layer 4: affined4 -> softmax Pass
outad = affine::forward(outd3, W4, b4)
probs = softmax::forward(outad)

## layer 4: affined4 <- softmax
doutad = softmax::backward(dprobs, outa4) NN Backward
[doutd3, dw4, db4] = affine::backward(douta4, outr3, W4, ba)
## layer 3: affine3 <- relu3 <- dropout Ir Pass

## layer 2: conv2 <- relu2 <- pool2 - Gradients
## layer 1: convl <- relul <- pooll

# Optimize with SGD w/ Nesterov momentum W1-W4, bl-b4 7 Model

[W4, vW4] = sgd_nesterov::update(W4, dw4, 1r, mu, vWa) g

[b4, vb4] = sgd_nesterov::update(b4, db4, 1lr, mu, vba) Updates
} N



Overview Data-Parallel Parameter Servers

System Architecture

M: Parameter Servers
N: Workers
Optimal Coordinator

M Parameter Servers

——————————————————————————

W .. Model
AW .. Gradient

N Workers



Overview Data-Parallel Parameter Servers

System Architecture

e M: Parameter Servers
e N: Workers
e Optimal Coordinator

Key Techniques

e Data partitioning D -> workers Di

M Parameter Servers

__________________________

W .. Model

l T AW .. Gradient

) (wz) | [ ) (v
() (wa) | | (w) (]
N Workers

(e.g., disjoint, reshuffling)

e Updated strategies (e.g., synchronous, asynchronous)
e Batch size strategies (small/large batches, hybrid methods)



History of Parameter Servers

1St Gen : Key/\’alue [Alexander J. Smola, Shravan

M. Narayanamurthy: An
Architecture for Parallel Topic
Models. PVLDB 2010]

e Distributed key-value store for parameter
. . [Jeffrey Dean et al.: Large Scale
istributed works.
exchange and synchronization s’
e Relatively high overhead

[Mu Li et al: Scaling Distributed
Machine Learning with the

2nd Gen: Classic Parameter Servers i
e Parameters as dense/sparse matrices

e Different update/consistency strategies

e Flexible configuration and fault tolerance




History of Parameter Servers

3rd Gen: Parameter Servers w/ improved data

communication

e Prefetching and range-based pull/push

e Lossy or lossless compression w/
compensations

Examples

e TensorFlow, PyTorch

[Jiawei Jiang, Bin Cui, Ce Zhang,
Lele Yu: Heterogeneity-aware
Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:
Accelerating Distributed Machine
Learning with Data Sketches.
SIGMOD 2018]




Basic Worker Algorithm (batch)

for( i 1in l:epochs ) {
for( j in l:iterations ) {
params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);

pushGradients(gradient);

} [Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
} NIPS 2012]




Update Strategies

Bulk Synchronous Parallel (BSP)
| Batch1 | | Batch2 | | Batch3 |
e Update model w/ collected gradients

| Batch1 || Batch2 | Batch3 |

e Barrier for N workers

Asynchronous Parallel (ASP) but, stale
model

¢ e

____Batch1 | Batch2 ] Batch3 |

e Update model for each gradient
e No barrier

Batch 1 Batch 2
Batch 1 Batch 2 Batch 3

Synchronous w/ Backup Workers

: | Batch1 | | Batch3 |
e Update model w/collected gradients

o Ba rraer -FO r N O -F N + b wor ke rs [Martin Abadi et al: TensorFlow: A System for

Large-Scale Machine Learning. OSDI 2016]




Intro to LLMs




Gemini Gemini GPT4 GPT-3.5 PalM2L Claude2 Inflect- Grok 1  LLAMA-2

MMLU 90.04% 79.13% 87.29% 70% 78.4% 78.5% 79.6% 73.0%  68.0%""
Multiple-choice questions  CoT@32" CoT@s" CoT@a2 5-shot 5-shot Sabot CoT  Sabet 5 shat
I 57 subjects (via API™*)
(professional &
) 83.7% 71.8% 86.4%
(Hendrycks et al, 20212) 5 ghoe S.shot S.shot
(reported)
GSMBK 94.4% 86.5% 92.0% 57.1% 80.0% 88.0% 81.4% 629% 56.8%
Grade-school math Maj1 @32 Majl @32 SFT & 5 shot 5-shot 0-shot Sahot S-shot 5-shoe
(Cobbe et al, 2021) S.shot CoT
MATH 53.2% 32.6% 52.9% 34.1% 34.4% — 34.8% 239% 13.5%
4 Math problems acruas 4t 4-shot 4 shot 4shat P #shoc 4shot
Options i s e SR
ines
(!mn al, 2021%) 50.3%
(Zheng et al.,
2023)
BIG-Bench-Hard 83.6% 75.0% 83.1% 66.6% 77.79% — - - 51.2%
L C h a t G P T Subwet of hard BiG-bench  3-shot 3.shot 3.shot 3.shot 3shot 3.shot
ﬁm-&‘rw (via API™) (via API™")
(Srivastava ot al, 2002)
L] L]
HumanEval 74.4% 67.7% 67.0% 48.1% —_ 70.0% 44.5% 63.2% 29.9%
e Google Gemini s e e o & LI T
(Chen et al, 2021) (reported)
Natural2Code 74.9% 69.6% 73.9% 62.3% — — — - -
Python code generation. 0-shot O-shot O-shot Oshot
(New held-out set with no (via APT™) (via AFI™)
e Lamda e
DROP 824 74.1 80.9 64.1 82.0 — — — —
Reading comprehension  Variable Variable 3-shot 3shot Variable
& arichenetic. shoty shots (reported) shoes
(smetric: F1-score)
e Llama e
87.8% 84.7% 95.3% 85.5% 86.8% — 89.0% — 80.0%"**
m 10-shot 10-shot 10-shot 10-4bot 10-shot 10-shot
Cnmﬂpc multiple (reported)
e Gork e
WMT23 74.4 7.7 738 - 72.7 — — — —
Machine translation (mee-  1-shot (IT) 1-shot 1-shot 1-shat
: (': w:r;nm) e
jom et o,
e Mistral

°® E 'L _i za ( l 9 6 6 ) https://blog.google/technology/ai/google-gemini-ai/#sundar-note



“It was the best of times, it was
" the worst of times”
All finite pieces of English text

-
Intro to LLMs | e

"911 how can | help you"

—_—— — «Call me lshmael” Distribution & over all conceivable pieces of English text.

Assigns probability Pr{w;wow,...w,] to every finite
opt'i ons word sequence WyW,W,...W,, (grammatical or not).

Qniirra: CNOK 224

e Next word prediction problem

e A probabilistic model that assign probability to every
finite sequence in e.g. English language

e Considering context, position, grammar and structure

e Sentence “the cat sat on the mat”

P(the cat sat on the map) = P(the)*P(cat|the) * P(sat|the cat) *P(on |the cat sat)x*P(the]|the

cat sat on) *P(mat|the cat sat on the)



LLM Training

Transformer based neural networks

EE==]. (]

Maseed Senterce A Masknd Sertercs B

e Y W b el

e Download ~10TB of text. s RS

e Get a cluster of ~6,000 GPUs. g A o AN Piand f Fnance

e (Compress the text into a neural PR S v tepiien Ty ST

e network, pay ~$2M, wait ~12 days. Payingofthe nationaldebt wil e Ape  devsopment o ihouse

® Obtain base model. oot oon gt 1 s ey
Fine Tuning

e Write labeling instructions ANGUAGE MODELS

e Hire people (or use scale.ai!), collect 100K : e

e high quality ideal Q&A responses, and/or

e comparisons.

e Finetune base model on this data ~1 day.

e Obtain assistant model.

e Run a lot of evaluations.



https://ai.stanford.edu/blog/understanding-incontext/
https://ai.stanford.edu/blog/understanding-incontext/
http://www.youtube.com/watch?v=zjkBMFhNj_g

LLM Parameters

Transformer based neural networks

sia)awesed [apoyy abenbueq

Unit : billion Google OpenAl Meta Microsoft LLMs split into various categories based on size

550 A PalM-2
- / N
= / N\ 3408
\ Gargantuan
350 4 q _ LLM
= : - o GPT-4 undisclosed
/\ Close to GPT-3
150 A \C
\. LLaMA-2
= il 708 Medium
LLaMA /
e 658 | i
Phi-1
- LLaMA o Small
78 ~. A LLaMA-2 LLM
0.0001 ' 78

o
2018 2019 2020 2021 2022 2023 2024

Source: Compiled by DIGITIMES Research, Aug. 2023
https://www.digitimes.com/news/a20231221VL202/2024-outlook-ai-edge-ai-llm.html



Q & A and Exam Preparation




Multiple choice question

e Which of the following best describes the concept of sparsification in

Machine Learning?

a. Reducing the number of data points in a dataset by removing duplicates.

b. Transforming a dense representation of data into a sparse one, where
many values are zero.

c. Increasing the density of data by adding synthetic samples to -improve
accuracy.

d. Replacing categorical features with numerical representations for model

compatibility.



Open questions

Message-oriented Middleware

o Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once
and Exactly-Once, and 1indicate which of them require persistent storage

before sending.



Open questions

Message-oriented Middleware

o Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once
and Exactly-Once, and 1indicate which of them require persistent storage

before sending.

“hame | oewrpton | Songe

At-Most-Once Send and forget, never sent message twice (even on No
failures)

At-Least-Once Store and forward, replay stream from Yes
(acknowledged) checkpoint

Exactly-Once Store and forward, replay stream from Yes
(acknowledged) checkpoint, transactional delivery



Open questions

Schema Matching / Entity Linking

e Explain the phases of a typical Entity Resolution Pipeline with example

techniques for the individual phases.



Open questions

Schema Matching / Entity Linking

e Explain the phases of a typical Entity Resolution Pipeline with example

techniques for the -individual phases.

|_ Prepare Blocking/
Data Sorting

m & il
m m/m (ol r2, r7
E an

m m i B3 b2 nrs, r6, 8



Stream Processing

a. Back Pressure

m Graceful handling of overload w/o data loss -*n*.*n*[ﬂl*a*

3ms 9ms 2ms

" Slow down sources Self-adjusting operator scheduling

m E.g., block'ing queues Pipeline runs at rate of slowest op

b. Load Shedding
m  Random-sampling-based load shedding
m Relevance-based load shedding

m Summary-based load shedding (synopses)



Summary and Q&A




Summary and Q&A

e Summary and Q&A

o

o

o

o

Landscape of ML Systems
Distributed Parameter Servers
Large Language Models

Q&A and Exam Preparation

e Oral Exam

o

Starting [Jan 30]

e Written Exam [Feb 07]



Vielen Dank!

(please participate in the course evaluation)



