
Data Integration and Large
Scale Analysis

12- Distributed ML Systems
Lucas Iacono. PhD. - 2025

Slides credit: Matthias Boehm - Shafaq Siddiqi

Agenda
● Landscape of ML Systems
● Distributed Parameter Servers
● Large Language Models at HPC
● Q&A and Exam Preparation

Landscape of ML Systems

What is an ML System?

From KDD to the AI Lifecycle

Classic KDD (Knowledge Discovery in Databases)

Descriptive (association rules, clustering) and predictive
Fayyad, U., Piatetsky-Shapiro,
G., & Smyth, P. (1996). The
KDD process for extracting
useful knowledge from volumes
of data. Communications of the
ACM, 39(11), 27-34.

SE
LE
CT
IO
N

PR
E-
PR
OC
ES
SI
NG

TR
AN
SF
OR
MA
TI
ON

DA
TA
 M
IN
IN
G

IN
TE
RP
RE
T/
E

VA
LU
AT
IO
N

DATA TARGET DATA PRE PROCESSED DATA TRANSFORMED DATA

EUREKA!

PATTERNS

https://dl.acm.org/doi/10.1145/240455.240464
https://dl.acm.org/doi/10.1145/240455.240464

From KDD to the AI Lifecycle

CRISP-DM (Cross-Industry Standard
Process for Data Mining)

What’s new? Business Understanding and
Deployment (A business perspective)

Source: Statistik Dresden

https://statistik-dresden.de/crisp-dm-ein-standard-prozess-modell-fur-data-mining/

From KDD to the AI Lifecycle

AI Lifecycle Problem
Definition

Data
Acquisition

and
Preparation

Model
Development &

Training

Model
Evaluation &
Refinement

MLOps: Model
Monitoring &
Maintenance

Model
Deployment

Ref: Jeffrey Saltz. Data Science Process Alliance.

https://www.datascience-pm.com/ai-lifecycle/

Driving Factors for ML

Improved Algorithms and Models

● Success across data and application domains
● (e.g., health care, finance, transport,

production)
● More complex models which leverage large data

Availability of Large Data Collections

● Increasing automation and monitoring data
● (simplified by cloud computing & services)
● Feedback loops, data programming/augmentation

Credit: Andrew Ng’ 14

Feedback Loop

Data

Usage Model

Driving Factors for ML

HW & SW Advancements

● Higher performance of hardware and
infrastructure (cloud)

● Open-source large-scale computation
frameworks, ML systems, and
vendor-provides libraries

Stack of ML Systems
ML Apps & Algorithms Supervised, unsupervised, RL,

libs, AutoML

Training

Stack of ML Systems
ML Apps & Algorithms Supervised, unsupervised, RL,

libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Training

Language Abstractions

Stack of ML Systems
ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Supervised, unsupervised, RL,
libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Training

Stack of ML Systems
ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Supervised, unsupervised, RL,
libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Local, distributed, cloud
(data, task, parameter server)

Training

Stack of ML Systems
ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

Supervised, unsupervised, RL,
libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Local, distributed, cloud
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

Training

Stack of ML Systems
ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Supervised, unsupervised, RL,
libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Local, distributed, cloud
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

Training

Stack of ML Systems
ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Supervised, unsupervised, RL,
libs, AutoML

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Local, distributed, cloud
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs resource requirements Specialization & Heterogeneity

Data Integration & Data
Cleaning

Data Preparation (e,g,
one-hot)

Data Programming and
Augmentation

Model and Feature Selection

Hyper-parameter tuning

Training

Deployment & Scoring

Validation & Debugging

Accelerators (GPUs, FPGAs, ASICs)

Memory- vs Compute-intensive

● CPU: dense/sparse, large mem, high mem-bandwidth, moderate
compute

● GPU: dense, small mem, slow PCI, very high mem-bandwidth /
compute

Graphics Processing Units (GPUs)

● Extensively used for deep learning training and scoring
● NVIDIA Volta: “tensor cores” for 4x4 mm -> 64 2B FMA instruction

Accelerators (GPUs, FPGAs, ASICs)

NVIDIA Volta (“tensor cores” for 4x4 mm -> 64 2B FMA
instruction)

● Tensor cores
○ Processing units introduced in Volta architecture
○ Accelerate matrix multiplications and convolutions

● 4x4 mm
○ Each tensor can multiply two 4x4 matrices.

● FMA (Fused Multiply-Add) instruction
○ Multiplication of two numbers and directly adds the

result to another number in a single step.
● 2B (2-byte). Each value being multiplied (e.g. weights and

activations) is 16 bits (half-precision) -> Faster
computation and less memory bandwidth

Accelerators (GPUs, FPGAs, ASICs)

Field-Programmable Gate Arrays (FPGAs)

● Customizable HW accelerators for prefiltering,
compression, DL

● Examples: Microsoft Catapult/Brainwave Neural Processing
Units (NPUs)

Application-Specific Integrated Circuits (ASIC)

● Spectrum of chips: DL accelerators to computer vision
● Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel

NNP

Data Representation

ML- vs DL-centric Systems

● ML: dense and sparse matrices or tensors,
different sparse formats (CSR, CSC, COO),
frames (heterogeneous data formats)

● DL: mostly dense tensors, embeddings
(dense representations of words or
tokens) for NLP

vec(Vienna) - vec(Austria) +
vec(Italy) = vec(Rome)

Data Representation

Data-Parallel Operations for ML

● Distributed matrices:
○ RDD <MatrixIndexes,MatrixBlock > (Spark)

● Data properties: distributed caching,
partitioning, compression

Data Representation

Lossy Compression -> Acc/Perf-Tradeoff

● Sparsification (reduce non-zero values)
● Quantization (reduce value domain 32 bit

floats to 8-bit integers)
● New data types: Intel Flexpoint (mantissa,

exp)
○ E.g: a 32 F Bits Integer can be represented as a 8-bit

mantissa with a shared exponent

Execution Strategies

Batch Algorithm:

Compute large datasets in blocks (not one data p/time)

● Data-parallel Split data into chunks -> dist + compute
● Task-parallel Divide workload into tasks -> dist +

compute
● Different strategies to implement physical operators

(e.g. “sum”) according to the architecture (local,
istributed)

Execution Strategies

Mini-Batch Algorithms Smaller subset of data at a time ->
improve computing time & memory usage

Parameter Server: centralizes the model parameters (e.g.
NN weights) -> multiple nodes read and update them.

● Data-parallel and model-parallel PS
● Update strategies (e.g., async, sync, backup)
● Data partitioning strategies (simple, featured-based)
● Federated ML

○ Data stays on local devices.
○ Models are trained locally, and only the updated

parameters are sent to a central server.

Execution Strategies

Lots of PS Decisions -> Acc/Perf-Tradeoff

● Configurations
○ Number of worker nodes

○ Batch size

○ Update strategie and frequency

Fault Tolerance & Resilience

Resilience Problem

● Increasing error rates at scale (soft/hard
mem/disk/net errors)

● Robustness for interruptions

Fault Tolerance & Resilience

Fault Tolerance in Large-Scale Computation

● Block replication (min=1, max=3) in distributed
file systems

● ECC; checksums for blocks, broadcast, shuffle
● Checkpointing

○ MapReduce: all task outputs
○ Spark/DL: on request

● Lineage-based recomputation for recovery in Spark

Language Abstractions

Optimization Scope

● Eager Interpretation (no optimization)
● Lazy expression evaluation (some optimizations)
● Program compilation (full optimization, difficult)

Optimization Objective

● Most common: minimize time under memory constraints.
● Multi-objective: min cost under time constraints, min time under

accuracy constraints, max accuracy under time constraints

Language Abstractions

Trend: Fusion and Code Generation

● Custom fused operations

● Examples: SystemDS, Weld, Taco, Julia, TF XLA, TVM, TensorRT

ML Applications

ML Algorithms (cost/benefit – time vs acc)

● Unsupervised/supervised; batch/mini-batch; first/second-order ML
● Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics in NoScope (time vs accuracy)

● Difference detectors / specialized
● models for “short-circuit evaluation”

Landscape of ML Systems

Distributed Parameter Servers

Background: Mini-batch ML Algorithms
Mini-batch ML Algorithms

● Iterative ML algorithms, where each iteration only
uses a batch of rows to make the next model update
○ Epochs over the entire batch
○ Random sampling of the batch

● For large and highly redundant training sets
● Applies to almost all iterative, model-based ML

algorithms (LDA, reg., class., factor., DNN)

Background: Mini-batch ML Algorithms
Statistical vs Hardware Efficiency (batch size)

● Statistical efficiency: more data points to achieve certain
accuracy

● Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at
different levels)

● Batched recommended size: 32 to 128 tuples

Background: Mini-batch DNN Training (LeNet)

Overview Data-Parallel Parameter Servers

System Architecture

● M: Parameter Servers
● N: Workers
● Optimal Coordinator

Key Techniques

● Data partitioning D -> workers Di (e.g., disjoint, reshuffling)
● Updated strategies (e.g., synchronous, asynchronous)
● Batch size strategies (small/large batches, hybrid methods)

Overview Data-Parallel Parameter Servers

System Architecture

● M: Parameter Servers
● N: Workers
● Optimal Coordinator

Key Techniques

● Data partitioning D -> workers Di (e.g., disjoint, reshuffling)
● Updated strategies (e.g., synchronous, asynchronous)
● Batch size strategies (small/large batches, hybrid methods)

History of Parameter Servers
1st Gen: Key/Value

● Distributed key-value store for parameter
exchange and synchronization

● Relatively high overhead

2nd Gen: Classic Parameter Servers

● Parameters as dense/sparse matrices
● Different update/consistency strategies
● Flexible configuration and fault tolerance

History of Parameter Servers
3rd Gen: Parameter Servers w/ improved data
communication

● Prefetching and range-based pull/push
● Lossy or lossless compression w/

compensations

Examples

● TensorFlow, PyTorch

Basic Worker Algorithm (batch)

for(i in 1:epochs) {

for(j in 1:iterations) {

params = pullModel(); # W1-W4, b1-b4 lr, mu

batch = getNextMiniBatch(data, j);

gradient = computeGradient(batch, params);

pushGradients(gradient);

}

}

Update Strategies

Bulk Synchronous Parallel (BSP)

● Update model w/ collected gradients
● Barrier for N workers

Asynchronous Parallel (ASP)

● Update model for each gradient
● No barrier

Synchronous w/ Backup Workers

● Update model w/collected gradients
● Barrier for N of N+b workers

Intro to LLMs

Intro to LLMs

Options

● ChatGPT

● Google Gemini

● Lamda

● Llama

● Gork

● Mistral

● Eliza (1966)

Intro to LLMs

Options

● Next word prediction problem

● A probabilistic model that assign probability to every

finite sequence in e.g. English language

● Considering context, position, grammar and structure

● Sentence “the cat sat on the mat”

P(the cat sat on the map) = P(the)*P(cat|the) * P(sat|the cat) *P(on |the cat sat)*P(the|the

cat sat on) *P(mat|the cat sat on the)

LLM Training

Fine Tuning

Pre-training (expensive)

Transformer based neural networks

● Download ~10TB of text.
● Get a cluster of ~6,000 GPUs.
● Compress the text into a neural
● network, pay ~$2M, wait ~12 days.
● Obtain base model.

● Write labeling instructions
● Hire people (or use scale.ai!), collect 100K
● high quality ideal Q&A responses, and/or
● comparisons.
● Finetune base model on this data ~1 day.
● Obtain assistant model.
● Run a lot of evaluations.

https://ai.stanford.edu/blog/understanding-incontext/
https://ai.stanford.edu/blog/understanding-incontext/
http://www.youtube.com/watch?v=zjkBMFhNj_g

LLM Parameters
Transformer based neural networks

Q & A and Exam Preparation

Multiple choice question
● Which of the following best describes the concept of sparsification in

Machine Learning?

a. Reducing the number of data points in a dataset by removing duplicates.

b. Transforming a dense representation of data into a sparse one, where

many values are zero.

c. Increasing the density of data by adding synthetic samples to improve

accuracy.

d. Replacing categorical features with numerical representations for model

compatibility.

Open questions
Message-oriented Middleware

○ Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once

and Exactly-Once, and indicate which of them require persistent storage

before sending.

Open questions
Message-oriented Middleware

○ Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once

and Exactly-Once, and indicate which of them require persistent storage

before sending.

Open questions
Schema Matching / Entity Linking

● Explain the phases of a typical Entity Resolution Pipeline with example

techniques for the individual phases.

Open questions
Schema Matching / Entity Linking

● Explain the phases of a typical Entity Resolution Pipeline with example

techniques for the individual phases.

Stream Processing
a. Back Pressure

■ Graceful handling of overload w/o data loss

■ Slow down sources

■ E.g., blocking queues

b. Load Shedding

■ Random-sampling-based load shedding

■ Relevance-based load shedding

■ Summary-based load shedding (synopses)

Summary and Q&A

Summary and Q&A

● Summary and Q&A

○ Landscape of ML Systems

○ Distributed Parameter Servers

○ Large Language Models

○ Q&A and Exam Preparation

● Oral Exam

○ Starting [Jan 30]

● Written Exam [Feb 07]

Vielen Dank!
(please participate in the course evaluation)

