
Data Integration and Large
Scale Analysis

09- Distributed Data Storage
Lucas Iacono. PhD. - 2024

Slides credit: Matthias Boehm - Shafaq Siddiqi

Part B
Large-Scale Data

Management & Analysis

● LU3. Cloud Computing
○ Cloud Computing Fundamentals

[Nov 29]
○ Cloud Resource Management and

Scheduling [Dec 06]
○ Distributed Data Storage[Dec 13]

Part B
Large-Scale Data

Management & Analysis

● LU4. Large-Scale Data
Analysis

○ Distributed, Data-Parallel
Computation [Dec 20]

○ Distributed Stream Processing
[Jan 10]

○ Distributed Machine Learning
Systems [Jan 17]

Agenda

● Announcements
● Motivation and

Terminology
● Object Stores and

Distributed File
Systems

● Key-Value Stores and
Cloud DBMS (+
eWarehouses)

Announcements

Announcements

● Course Evaluation and Exam
○ Exercise submission deadline January 13
○ Evaluation Period: Dec 09 - Feb 13
○ Exam date: Feb 07, 3:00 PM (90 Min written exam)
○ Second Exam date: TBD (~ 2 weeks after first exam)

Motivation and Terminology

Motivation and Terminology

Overview Distributed Data Storage: Distributed DBS (L#03)

● What?
○ A DBS is a virtual (logical) database that appears as a single

database to the user but is composed by multiple physical databases
located in different physical locations.

● Why?
○ Store and process data efficiently (e.g. data spread across different

geographical locations).
○ Lets users access and work with data as if it were all in one place,

even though it's distributed.

Motivation and Terminology

Overview Distributed Data Storage: Components for Global Query
Processing

What if you run a query in a DBS?

1. Identify Figure out which physical databases contain the
requested information.

2. Unify Combine the data from multiple databases as if it came from
a single source.

3. Optimize Ensure the distributed system is fast and efficient when
handling queries.

Motivation and Terminology

Overview Distributed Data Storage: DBS Types

● Virtual DBS (homogeneous):
○ All databases use the same technology and structure (schema).
○ Example: Several MySQL databases distributed across locations, all set up

identically.
● Federated DBS (heterogeneous):

○ The databases can use different technologies or schemas.
○ Example: A PostgreSQL database working together with a MongoDB database.

Motivation and Terminology

Overview Distributed Data Storage: Cloud & Distributed Storage

Why?

1. Large-scale: handle very large amounts of data.
2. Semi-structured/nested. Data doesn't align with traditional

rows and columns (JSON, XML).
3. Fault tolerance: Data available and reliable despite system

components’ failures

Motivation and Terminology

Overview Distributed Data Storage: Cloud & Distributed Storage

Types: Cloud Storage

1. Block Storage (e.g. AWS EBS):
a. Data splitted into blocks, which can be individually read

or written.
b. Used for systems that need fast, low-level access to data.
c. Analogy. Books are split into pages (blocks), and you can

quickly access any page.

Motivation and Terminology

Overview Distributed Data Storage: Cloud & Distributed Storage

Types: Cloud Storage

1. Object Storage (e.g. AWS S3):
a. Data stored as objects (data, metadata, and UID).
b. Ideal for storing unstructured data like media files,

backups, or large datasets.
c. Objects of a limited size (e.g., 5TB in AWS S3).
d. Analogy: Each book is stored as a single unit with a label

and description.

Motivation and Terminology

Overview Distributed Data Storage: Cloud & Distributed Storage

Types: Distributed file systems

1. Distributed File Systems (e.g. NFS, HDFS):
a. File systems built on top of block or object storage to

manage files across multiple servers.
b. Allow for large-scale file sharing and processing.
c. Analogy: A librarian manages where the books (files) are

stored across multiple shelves (servers).

Motivation and Terminology

Overview Distributed Data Storage: Cloud & Distributed Storage

Types: Database as a Service (DBaaS) - 1

NoSQL Stores (e.g. Redis, MongoDB):

a. Target: Designed for flexibility and scalability.
b. Types:

i. Key-Value Stores: Store data as key-value pairs
ii. Document Stores: Store data as documents

Motivation and Terminology

Overview Distributed Data Storage: Cloud & Distributed Storage

Types: Database as a Service (DBaaS) - 2

Cloud DBMSs (e.g. Amazon RDS, Google Cloud SQL):

a. Target: handle Online Transaction Processing (OLTP) and
Online Analytical Processing (OLAP) workloads.

b. Combine the traditional database structure with the
scalability and flexibility of the cloud.

c. Analogy: The library has different sections (SQL and
NoSQL) to organize your books either as detailed indexes
(SQL) or free-form notes (NoSQL). All this is in a
building (cloud) you don't have to manage!

Motivation and Terminology

Central Data Abstractions: Files and Objects

File: large and continuous block of data saved in a specific format (CSV,
Binary, etc.).

Object: like a file, but binary and it comes with metadata (Images on S3)

Analogy

● File = book: a single block of information in a specific format.
● Object = book with a cover that has extra info.

Motivation and Terminology

Central Data Abstractions: Distributed Collections

Logical multi-set (bag) of key-value pairs (unsorted collection)

Different physical representations key-value pairs can be stored
in various ways (e.g., database, across files, or in memory).

Easy Distribution via Horizontal Partitioning. Data divided into
"chunks" (shards or partitions) based on the keys. Each chunk
stored on a different machine (easier to handle large-scale data).

How collections are created: from single file with data or a
folder of files (even if they’re messy and unsorted).

Analogy: A distributed collection is like organizing a library
where each shelf (server) holds books based on their first letter.

Key Value

4 Delta

2 Bravo

1 Alfa

3 Charlie

5 Echo

6 Foxtrot

1 Alfa

Motivation and Terminology

Data Lake concept: a massive collection of
datasets that may…

● be hosted in different storage systems
● vary in their formats
● not be accompanied by any useful metadata or

may use different formats to describe their
metadata

● change autonomously over time

Nargesian, F., Zhu, E.,
Miller, R. J., Pu, K. Q., &
Arocena, P. C. (2019). Data
lake management:
challenges and
opportunities. Proceedings
of the VLDB Endowment,
12(12), 1986-1989.

https://dl.acm.org/doi/abs/10.14778/3352063.3352116
https://dl.acm.org/doi/abs/10.14778/3352063.3352116

Motivation and Terminology

[*] Nargesian, F., Zhu, E.,
Miller, R. J., Pu, K. Q., &
Arocena, P. C. (2019). Data
lake management:
challenges and
opportunities. Proceedings
of the VLDB Endowment,
12(12), 1986-1989.

Data Lake Management System [*]

https://dl.acm.org/doi/abs/10.14778/3352063.3352116
https://dl.acm.org/doi/abs/10.14778/3352063.3352116

Motivation and Terminology

Data Lake key features:

● Store Everything:
○ Store all kinds of data, no matter its structure.
○ Data added as-is (append-only). Then, it’s not modified in place.

● No Pre-Planning Required:
○ No need for defining a fixed schema (data structure) before adding data.
○ Useful for situations where analysis to perform is not yet clear.

● File-Based Storage:
○ Data stored as raw files, open formats (CSV, JSON, etc).
○ Files can serve as inputs or intermediate outputs for further processing.

● Scalable and Agile:
○ Data lakes rely on distributed storage to handle huge datasets.
○ They support distributed analytics for processing data quickly and efficiently.

Motivation and Terminology

Data Lake downside “Data Swamp”

● Low Data Quality Without a schema data might be
incomplete, incorrect, or inconsistent.

● Missing Metadata hard to search and understand what
the data is for.

● No Data Catalog Without a clear catalog, it’s
challenging to locate specific datasets in the
lake.

● Solution: data curation, metadata management, data
catalog, governance, provenance.

Halevy et.al.
(2016, June).
Goods: Organizing
google's datasets.
In Proceedings of
the 2016
International
Conference on
Management of Data
(pp. 795-806).

https://dl.acm.org/doi/pdf/10.1145/2882903.2903730
https://dl.acm.org/doi/pdf/10.1145/2882903.2903730

Object Stores and Distributed File Systems

Object Storage

Recap: Key-Value stores

● Key-value mapping
○ Values can be of a variety of data types
○ Example: “250” {“sensor”: “Speed_FW_Left” , “raw”: 150}

● Scalability using Sharding:
○ Datasets splitted into smaller chunks (shards) across multiple

machines.
○ Each shard handles a subset of the key-value pairs, enabling the

system to scale efficiently.
● APIs for CRUD

○ Enable entities to interact with the key-value store to perform these
operations (Copy-Read-Update-Delete)

Object Storage

Object Store. Similar to key-value stores, but optimized for
large objects (videos, backups, etc.).

● Structure:
○ Object Identifier (Key): UID to retrieve the object.
○ Metadata (e.g., size, type, creation date).
○ Object (BLOB): The actual data, stored as a Binary Large Object.

● APIs:
○ REST APIs: HTTP-based interfaces for CRUD
○ DFS APIs: APIs similar to Distributed File Systems (e.g., HDFS).
○ SDKs: Programming libraries for easier integration with applications.

Object Storage
Key Techniques

D
D1

D2

D3

D11

D22

D32

D12

D21

D31

D11

D12

D21 D32

D22 D31Partitioning
& Parity

Replication

Distribution

Partitioning

Erasure
Coding

Object Storage

Examples: Amazon Simple Storage Service

● Reliable object store for photos, videos, documents or any
binary data

● Bucket: Uniquely named, static data container
● arn:aws:s3:::distributed-storage
● https://distributed-storage.s3.us-west-2.amazonaws.com/Temperatu

re-processed.csv
● Single (5GB)/multi-part (5TB) upload and direct/BitTorrent

download
● Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE
● Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

Hadoop Distributed File System (HDFS)

Brief Hadoop History

● Google’s GFS + MapReduce [ODSI’04] -> Apache Hadoop
(2006).

HDFS Overview

● Hadoop’s distributed file system, for large clusters and
datasets

● Implemented in Java, w/ native libraries for compression,
I/O, CRC32

● Files split into 128MB blocks, replicated (3x), and
distributed

Hadoop Distributed File System (HDFS)

How HDFS works:

● Split files into Blocks
● Store blocks across nodes
● Replicate blocks for reliability

Hadoop Distributed File System (HDFS)

HDFS NameNode

● Keeps a record of where every block is stored (it doesn’t store the
actual data).

● Metadata for all files (e.g., replication, permissions, sizes,
block ids, etc)

HDFS DataNode

● Worker daemon per cluster node that manages block storage (list of
disks)

● Block creation, deletion, replication as individual files in local
FS

● On startup: scan local blocks and send block report to name node
● Serving block read and write requests
● Send heartbeats to NameNode (capacity, current transfers) and

receives replies (replication, removal of block replicas)

HDFS InputFormats and RecordReaders

Overview InputFormats

● InputFormat:
○ An interface or class in Hadoop that specifies how input data is

divided into splits and provides access to data through record
readers.

● Determines:
○ How files are split into manageable chunks for parallel processing.
○ How data is presented to the Mapper as key-value pairs.

HDFS InputFormats and RecordReaders

Overview InputFormats Split

● A logical division of the input data aligned with the
block size of HDFS (128 MB).

● Each split is processed by a single Mapper, enabling
parallelism.

● Example: 1 GB file and the HDFS block size is 128 MB, the
file will be split into 8 chunks (splits).

● Record alignment ensures that splits don’t break data
records (e.g., lines or rows).

HDFS InputFormats and RecordReaders

Overview InputFormats Record Reader

● API that converts each input split into key-value pairs.

● Reads the raw data (e.g., lines, binary records) and

formats it into key-value pairs for the Mapper.

HDFS InputFormats and RecordReaders

Overview InputFormats Example

FileInputFormat.addInputPath(job,
path); # path: dir/file
TextInputFormat informat = new
TextInputFormat();
InputSplit[] splits =
informat.getSplits(job, numSplits);
LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader
= informat
.getRecordReader(split, job,
Reporter.NULL);
while(reader.next(key, value))
... //process individual text lines
}

START

Define Input Path

Create Job & add input path

Text input format

Generate Input Splits

Initialize RecordReader for
Each Split

Process Each Key-Value Pair

END

Key-Value

Byte
offset

Line
content

HDFS InputFormats and RecordReaders
Sequence Files (store key-value pairs efficiently)

● Binary File format (reducing storage overhead compared to plain text files)

● Optimal Compression Record-level and block-level compression

● Input & Output in MapReduce/Spark jobs

● Intermediate storage during MapReduce workflows

● Splittable: they can be splittable allowing parallel processing in Hadoop.

● e.g. frame1.jpg, frame2.jpg

Header Sync Record Record Record Sync

Record
Length

Key
Length

Value
Length

HDFS Read

Client JVM

NameNode

DataNodeDataNodeDataNode

2

4

5

HDFS Client DFS

InputFormat

3
6

1

1. Open
2. Get Block Locations
3. Read
4. Read
5. Read
6. Close

Client Communicates with the NameNode

1. RPC (Remote Procedure Call) to the NameNode to create a new file in
HDFS.

2. The NameNode checks whether the file already exists and whether the
client has the necessary permissions to create it.

3. If everything is valid, the NameNode:
a. Allocates a lease to the client, granting it the right to write to

the file.
b. Identifies a set of DataNodes (replica nodes) where the blocks of

the file will be stored.

HDFS Write

NameNode

Client JVM

HDFS Client

1

2

3

Writing Blocks to DataNodes

1. The client begins writing data in blocks to the first DataNode in
the pipeline.

2. Once the first DataNode receives a block, it forwards a copy of the
block to the second DataNode in the pipeline.

3. The second DataNode then forwards the block to the third DataNode,
completing the replication pipeline.

DataNodes Report to the NameNode

1. After receiving and storing the data blocks, each DataNode sends a
heartbeat. It includes a report confirming that the DataNode has
successfully stored the block and is ready for future tasks.

HDFS Write

NameNode

Client JVM

HDFS Client

DN2 DN3DN1

1

2

3

4

HDFS Data Locality

HDFS is generally rack-aware (node-local, rack-local, other)

Scheduler reads from closest data node

Replica placement (rep 3): local DN, other-rack DN, same-rack DN

Key-Value Stores and Cloud DBMS (+
EWarehouses)

Key-Value Stores Motivation
Motivation

Simple Data Representation: Key-Value Stores enable mapping
data using a simple API, allowing more complex data models
(e.g., JSON) to be transformed into simple key-value pairs.

Reliability at Scale: Designed to operate reliably at
very-large scale using commodity hardware and distributing the
workload across multiple servers. This is critical in cloud
computing (scalability and elasticity are essential).

Key-Value Stores: Terminology
System architecture

● Key-Value Map: each key is associated with a single value (of a variety of data). E.g

"temperature:2024-12-12T00:00:00Z": -1.5

● APIs for CRUD Operations:

○ Create: Add new key-value pairs.

○ Read: Retrieve the value associated with a key.

○ Update: Modify the value associated with an existing key.

○ Delete: Remove a key-value pair.

● Scalability via Sharding (Horizontal Partitioning):

○ Each server handles a subset of the data (e.g., a range of keys), Server 1: data

for 2024-12-12, Server 2:data for 2024-12-13.

○ Scale horizontally by adding more servers as the data grow.

Key-Value Stores: Example
Amazon DynamoDB Simple, highly-available data storage for small objects in ~1MB range
(data, shopping carts)

● Aims to achieve Service Level Agreements (SLAs) that guarantee 99.9% of requests

are served with low latency, even under high loads.

● System interface: get and put operations

● Partitioning using consistent hashing where Nodes are organized in a ring

structure and each node is responsible for a specific range of keys. Nodes hold

multiple virtual nodes for load balance.

● Replication, Each data is replicated N times to provide fault tolerance.

● Eventual consistency (all replicas will eventually converge to the same state,

but temporary inconsistencies may exist).

Cloud Databases (DBaaS): Motivation and Key-aspects
DBaaS: A cloud service model that allows users to access, manage, and scale databases

without dealing with the underlying infrastructure.

Providers handle database configuration, maintenance, security, updates, and

availability.

Key aspects

● SQL and NoSQL (MongoDB, DynamoDB).

● Auto-scaling, high availability, and support for multiple data types.

● Mainly used for transactional applications OLTP (web apps, IoT, etc.)

Examples: Amazon RDS, Google Cloud SQL, Azure SQL Database

Elastic Data Warehouses
● Data warehousing + Cloud Computing + Distributed Storage

● Analytics and reporting (Online Analytical Processing - OLAP)

http://www.youtube.com/watch?v=CFw4peH2UwU
http://www.youtube.com/watch?v=CFw4peH2UwU
http://www.youtube.com/watch?v=eq4o26Hpuac
https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview

Summary and Q&A

Summary and Q&A

● Summary and Q&A

○ Motivation and Terminology

○ Object Stores and Distributed File Systems

○ Key-Value Stores and Cloud DBMS

● Next Lectures

○ Distributed, Data-Parallel Computation [Dec 20]

Vielen Dank!

