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Part B
Large-Scale Data 

Management & Analysis

● LU4. Large-Scale Data 
Analysis

○ Distributed, Data-Parallel 
Computation [Dec 20]

○ Distributed Stream Processing 
[Jan 10]

○ Distributed Machine Learning 
Systems [Jan 17]



Agenda ● Data Stream Processing
● Distributed Stream Processing
● Data Stream Mining
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Data Stream Processing: Terminology

Ubiquitous Data Streams

Event and message streams (e.g., clicks, twitter, IoT, Sensor 
Networks, Machines) 

Characteristics

Event Streams Message Streams

● Time-oriented.
● Immutable
● Real-time 

processing

● System 
communication

● Asynchronous
● Structured



Data Stream Processing: Terminology

Stream Processing Architecture

● Infinite input streams, often with windows semantics
● Continuous queries 

DBMS

Queries

“Data at rest”

Stored Data
Stored (continuous) queries

Input 
Stream

Output 
Stream

“Data in motion”

Stream Processing Engines



Data Stream Processing: Terminology

Use Cases

● Monitoring and alerting (notifications on events / patterns)
● Real-time reporting (aggregate statistics for dashboards)
● Real-time ETL and event-driven data updates
● Real-time decision making (fraud detection)
● Data stream mining (summary statistics w/ limited memory)

Data Stream

● Unbounded stream of data tuples S = (s1,s2, …) with si=(ti,di)
● S={(t1 ,22.5),(t2 ,22.7),(t3 ,22.8),…}



Data Stream Processing: Terminology

Real-time Latency Requirements

● Real-time: guaranteed task completion by a given deadline (30 
fps)

● Near Real-time: few milliseconds to seconds
● In practice, used with much weaker meaning

Challenges in Real-Time Systems:

● Resource Constraints
● Latency
● Concurrency



Data Stream Processing: History of Stream Processing Systems
2000s

● Data stream management systems: STREAM(Stanford’01), Aurora (Brown/MIT/Brandeis’02), 
TelegraphCQ (Berkeley’03) but mostly unsuccessful in industry/practice

● Message-oriented middleware and Enterprise Application Integration (EAI): IBM Message 
Broker, SAP eXchange Infra

Academic DSMS MOM (Message-oriented middlewares) EAI (Enterprise Application Integration)

Real-time data stream 
processing

Asynchronous message communication 
between systems

Workflow orchestration for enterprise 
systems

SQL-like queries on 
streams

Sending simple or complex messages Integration of complex applications

Time windows and 
event-based operations

Event-based message delivery Event-driven task coordination

Academic prototypes Industrial implementations (Kafka) Enterprise suites IBM MQ



Data Stream Processing: History of Stream Processing Systems

2010s

● Distributed stream processing engines, and “unified” 
batch/stream processing

● Proprietary systems: Google Cloud Dataflow, MS StreamInsight 
/ Azure Stream Analytics, IBM InfoSphere Streams / Streaming 
Analytics, AWS Kinesis

● Open-source systems: Apache Spark Streaming (Databricks), 
Apache Flink (Data Artisans), Apache Kafka (Confluent), 
Apache Storm



System Architecture - Native Streaming

Basic System Architecture

● Data flow graphs (potentially w/ 
multiple consumers)

● Nodes asynchronous ops (w/ 
state) (e.g., separate threads)

● Edges data dependencies 
(tuple/message streams)

● Push model data production 
controlled by source

State

Archive

Stateful or 
stateless (e.g. 
sessions)

e.g. 
database 
Look-Up



System Architecture - Native Streaming

Basic System Architecture

● Data flow graphs (potentially w/ 
multiple consumers)

● Nodes asynchronous ops (w/ 
state) (e.g., separate threads)

● Edges data dependencies 
(tuple/message streams)

● Push model data production 
controlled by source

Operator Model

● Read from input queue
● Write to potentially many output 

queues

State

Archive

while( !stopped ) 
{ 
r = in.dequeue(); // blocking 
if( pred(r.A) ) // A==7 
for( Queue o : out ) 
o.enqueue(r); // blocking
}



System Architecture - Sharing

Multi-Query Optimization

● Given set of continuous queries compile minimal DAG w/o 

redundancy -> subexpression elimination -> avoid redundant 

operations and share intermediate results between queries to 

improve system efficiency.

● Operator and Queue Sharing
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System Architecture - Sharing

Multi-Query Optimization

T1 T2 T3

F1 F2 F3

U

O1

T2 T3

T4

F2 F3

U

⋈
A = B

O2

T1

F1

U

O1

T2 T3

F2 F3

U T4

⋈
A = B

O2

Operator Sharing: complex ops w/ multiple 
predicates for adaptive reordering

Queue Sharing: share results with multiple 
queries



System Architecture - Sharing

Operator sharing: complex ops w/ multiple predicates for adaptive reordering

// Query 1: Average of pressures greater than 100
average_pressures = FILTER "pressures" WHERE value > 100
                       GROUP BY 1-minute_interval
                       COMPUTE AVERAGE(value)

// Query 2: Count of pressures greater than 100
count_pressures = FILTER "pressures" WHERE value > 100
                     GROUP BY 1-minute_interval
                     COMPUTE COUNT(value)
// Execute both queries
EXECUTE average_pressures
EXECUTE count_pressures

Same filter applied twice in Q1 & 
Q2 -> duplicated work.



System Architecture - Sharing

Operator sharing

// Query 1: Average of pressures greater than 100
average_pressures = FILTER "pressures" WHERE value 
> 100
                       GROUP BY 1-minute_interval
                       COMPUTE AVERAGE(value)

// Query 2: Count of pressures greater than 100
count_pressures = FILTER "pressures" WHERE value > 
1000
                     GROUP BY 1-minute_interval
                     COMPUTE COUNT(value)
// Execute both queries
EXECUTE average_pressures
EXECUTE count_pressures

//Apply the common filter only once
filtered_pressures = FILTER "pressures" WHERE 
value > 1000

// Query 1: Average value of the filtered 
pressures
average_pressures = GROUP filtered_pressures BY 
1-minute_interval
                        COMPUTE AVERAGE(value)

// Query 2: Count of the filtered pressures
count_pressures = GROUP filtered_pressures BY 
1-minute_interval
                     COMPUTE COUNT(value)

// Execute both queries in parallel
EXECUTE average_pressures
EXECUTE count_pressures
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w/o data loss

○ Slow down sources

○ E.g. blocking queues
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System Architecture - Handling Overload
● Back Pressure 

○ Graceful handling of overload 

w/o data loss

○ Slow down sources

○ E.g. blocking queues

[Nesime Tatbul 
et al: Load
Shedding in a 
Data Stream
Manager. VLDB 
2003]

A B C

3ms 9ms 2ms

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

● Load Shedding
○ Random-sampling-based load shedding
○ Relevance-based load shedding
○ Summary-based load shedding (synopses)
○ Given SLA, select queries and shedding placement that minimize error 

and satisfy constraints

https://www.sciencedirect.com/science/article/abs/pii/B9780127224428500355
https://www.sciencedirect.com/science/article/abs/pii/B9780127224428500355


System Architecture - Handling Overload
● Back Pressure 

○ Graceful handling of overload 

w/o data loss

○ Slow down sources

○ E.g. blocking queues

A B C

3ms 9ms 2ms

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

● Load Shedding
○ Random-sampling-based load shedding
○ Relevance-based load shedding
○ Summary-based load shedding (synopses)
○ Given SLA, select queries and shedding placement that minimize error 

and satisfy constraints

● Distributed Stream Processing 
○ Data flow partitioning (distribute the query)
○ Key range partitioning (distribute the data stream)

[Nesime Tatbul 
et al: Load
Shedding in a 
Data Stream
Manager. VLDB 
2003]

https://www.sciencedirect.com/science/article/abs/pii/B9780127224428500355
https://www.sciencedirect.com/science/article/abs/pii/B9780127224428500355


Time (Event, System, Processing)
● Event Time
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○ System time when the data item was received
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Time (Event, System, Processing)
● Event Time

○ Real time when the event/data item was created

● Ingestion 

○ System time when the data item was received

● Processing Time 

○ System time when the data item is processed

● In practice

○ Delayed and unordered data items

○ Use of heuristics (e.g watermarks, delays)

○ Use of more complex triggers (speculative and late 

results)

Pr
oc

es
si

ng
 T

im
e

Event Time

Idealskew



Durability and Consistency Guarantees
● At Most Once

○ “Send and forget”, ensure data is never counted twice

○ Might cause data loss on failures

03 Message-oriented
Middleware, EAI, and

Replication
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○ Might create incorrect state (processed multiple times)
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Durability and Consistency Guarantees
● At Most Once

○ “Send and forget”, ensure data is never processed twice
○ Might cause data loss on failures

● At Least Once
○ “Store and forward” deliver the message until reception of the 

acknowledgements from receiver
○ Might create incorrect state (processed multiple times)

● Exactly Once
○ “Store and forward” w/ guarantees regarding state updates and sent msgs
○ Often via dedicated transaction mechanisms (hand-shaking protocols)

03 Message-oriented
Middleware, EAI, and

Replication



Window Semantics
● Windowing Approach

○ Many operations like joins/aggregation undefined over unbounded streams

○ Compute operations over windows of (a) time or (b) elements counts



Window Semantics
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Window Semantics

● Tumbling Window

○ Every data item is only part of a 

single window

○ Aka Jumping window

● Sliding Window

○ Time- or tuple-based sliding windows

○ Insert new and expire old data items

● Windowing Approach

○ Many operations like joins/aggregation undefined over unbounded streams

○ Compute operations over windows of (a) time or (b) elements counts
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○ Tumbling window: use classic join methods
○ Sliding window (symmetric for both R and S) 

■ Applies to arbitrary join pred



Stream Joins I
Basic Stream Join

○ Tumbling window: use classic join methods
○ Sliding window (symmetric for both R and S) 

■ Applies to arbitrary join pred

Example:  join two streams where an event in stream R (sensor_reading) should be 

matched with a value in stream S (control command) in a 3-second sliding window.

For each new r in R:

a. Scan window of stream S to find match tuples

b. Insert new r into window of stream R

c. Invalidate expired tuples in window of stream R



Stream Joins II
● Double-Pipelined Hash Join

○ Join of bounded 

streams (or unbounded 

w/ invalidation)

○ Equi join predicate, 

symmetric and 

non-blocking

○ For every incoming 

tuple (e.g. left): 

probe (right)+emit, 

and build (left)

HR, RID HS, SID

Stream 
R

Stream 
S
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○ Join of bounded 

streams (or unbounded 
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○ Equi join predicate, 

symmetric and 
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○ For every incoming 

tuple (e.g. left): 

probe (right)+emit, 

and build (left)
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Stream Joins II
● Double-Pipelined Hash Join

○ Join of bounded 

streams (or unbounded 

w/ invalidation)

○ Equi join predicate, 

symmetric and 

non-blocking

○ For every incoming 

tuple (e.g. left): 

probe (right)+emit, 

and build (left)

HR, RID

1,2

HS, SID

1,7

1 ab

2 cd

7 zy

1 xw

Stream 
R

Stream 
S

emit 1(abxw)



Stream Joins II
● Double-Pipelined Hash Join

○ Join of bounded 

streams (or unbounded 

w/ invalidation)

○ Equi join predicate, 

symmetric and 

non-blocking

○ For every incoming 

tuple (e.g. left): 

probe (right)+emit, 

and build (left)

HR, RID

1,1,2

HS, SID

1,7

1 ab

2 cd

1 ef

7 zy

1 xw

Stream 
R

Stream 
S

emit 1(efxw)

emit 1(abxw)



Stream Joins II
● Double-Pipelined Hash Join

○ Join of bounded 

streams (or unbounded 

w/ invalidation)

○ Equi join predicate, 

symmetric and 

non-blocking

○ For every incoming 

tuple (e.g. left): 

probe (right)+emit, 

and build (left)

HR, RID

1,1,2,7

HS, SID

1,7

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

Stream 
R

Stream 
S

emit 1(efxw)

emit 7(ghzy)

emit 1(abxw)



Stream Joins II
● Double-Pipelined Hash Join

○ Join of bounded 

streams (or unbounded 

w/ invalidation)

○ Equi join predicate, 

symmetric and 

non-blocking

○ For every incoming 

tuple (e.g. left): 

probe (right)+emit, 

and build (left)

HR, RID

1,1,2,7

HS, SID

1,7,7

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

7 vu

Stream 
R

Stream 
S

emit 1(efxw)

emit 7(ghzy)

emit 1(abxw)

emit 7(ghvu)



Distributed Stream Processing



Query-Aware Stream Partitioning

Example Use Case

● AT&T network monitoring with Gigascope (e.g., OC768 
network)

● 2x40 Gbit/s traffic  112M packets/s  26 cycles/tuple on 
3Ghz CPU

● Complex query sets (apps w/ ~50 queries) and massive data 
rates

T. Johnson et.al, 
Query-aware 
partitioning for 
monitoring
massive network data 
streams. SIGMOD 2008

https://dl.acm.org/doi/pdf/10.1145/1376616.1376730
https://dl.acm.org/doi/pdf/10.1145/1376616.1376730


Query-Aware Stream Partitioning
Baseline Query Execution Plan

T. Johnson et.al, 
Query-aware 
partitioning for 
monitoring
massive network data 
streams. SIGMOD 2008

Query FLOWS: composed by 3 sub-queries about how many 
requests are made by each IP in the network (per 
minute)

Query HEAVY FLOWS: maximum queries per IP

Query FLOW PAIRS: users generating heavy-loads during 
an specific period

https://dl.acm.org/doi/pdf/10.1145/1376616.1376730
https://dl.acm.org/doi/pdf/10.1145/1376616.1376730


Query-Aware Stream Partitioning
Solution divide in sub-queries and distribute

Optimized Plan:

● Distributed Plan operators
● Pipeline and task parallelism
● Not always enough

T. Johnson et.al, 
Query-aware 
partitioning for 
monitoring
massive network data 
streams. SIGMOD 2008

Final 
Aggregation

https://dl.acm.org/doi/pdf/10.1145/1376616.1376730
https://dl.acm.org/doi/pdf/10.1145/1376616.1376730


Stream Group Partitioning

● Large-Scale Stream Processing
○ Limited pipeline parallelism and task parallelism (independent 

subqueries)

○ Combine with data-parallelism over stream groups

● Shuffle Grouping
○ Tuples are randomly distributed across consumer tasks

○ Good load balance



Stream Group Partitioning
● Fields Grouping

○ Tuples partitioned by grouping attributes

○ Guarantees order within keys, but load imbalance if skew

● Partial Key Grouping
○ Apply “power of two choices” to streaming

○ Key splitting: select among 2 candidates per key (works 

for all associative aggregation functions)



Example Apache Storm

● Example Topology DAG
○ Spouts: sources of streams

○ Bolts: UDF compute ops

○ Tasks mapped to worker 

processes and executors 

(threads)
Bolt 2

Bolt 1

Spout 1 Bolt 3



Example Apache Storm

● Example Topology DAG
○ Spouts: sources of streams

○ Bolts: UDF compute ops

○ Tasks mapped to worker 

processes and executors 

(threads)
Bolt 2

Bolt 1

Spout 1 Bolt 3

Config conf = new Config();
conf.setNumWorkers(3);
topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)
.shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");
StormSubmitter.submitTopology(..., topBuilder.createTopology());



Example Twitter Heron

● Motivation

○ Heavy use of Apache Storm at Twitter

○ Issues: debugging, performance, shared cluster resources, 

back pressure mechanism

Sanjeev 
Kulkarni et 
al:
Twitter Heron: 
Stream
Processing at 
Scale.
SIGMOD 2015

https://dl.acm.org/doi/pdf/10.1145/2723372.2742788
https://dl.acm.org/doi/pdf/10.1145/2723372.2742788


Example Twitter Heron

● Motivation

○ Heavy use of Apache Storm at Twitter

○ Issues: debugging, performance, shared cluster resources, 

back pressure mechanism

● Twitter Heron

○ API-compatible distributed streaming engine

○ De-facto streaming engine at Twitter since 2014 Sanjeev 
Kulkarni et 
al:
Twitter Heron: 
Stream
Processing at 
Scale.
SIGMOD 2015

https://dl.acm.org/doi/pdf/10.1145/2723372.2742788
https://dl.acm.org/doi/pdf/10.1145/2723372.2742788


Example Twitter Heron

● Motivation

○ Heavy use of Apache Storm at Twitter

○ Issues: debugging, performance, shared cluster resources, 

back pressure mechanism

● Twitter Heron

○ API-compatible distributed streaming engine

○ De-facto streaming engine at Twitter since 2014

● Dhalion (Heron Extension)

○ Automatically reconfigure Heron topologies to meet 

throughput SLO

● Now back pressure implemented in Apache Storm 2.0 (May 2010)

Sanjeev 
Kulkarni et 
al:
Twitter Heron: 
Stream
Processing at 
Scale.
SIGMOD 2015

https://dl.acm.org/doi/pdf/10.1145/2723372.2742788
https://dl.acm.org/doi/pdf/10.1145/2723372.2742788


Discretized Stream (Batch) Computation

● Motivation

○ Fault tolerance (low overhead, fast recovery)

○ Combination w/ distributed batch analytics

Matei Zaharia 
et al: 
Discretized
streams: 
fault-tolerant
streaming 
computation at
scale. SOSP 
2013



Discretized Stream (Batch) Computation

● Motivation

○ Fault tolerance (low overhead, fast recovery)

○ Combination w/ distributed batch analytics

● Discretized Streams (DStream)

○ Batching of input tuples (100ms – 1s) based on ingest time.

○ Periodically run distributed jobs of stateless, deterministic tasks -> 

DStreams

○ State of all tasks materialized as RDDs, recovery via lineage

● Criticism: High latency, required for batching

Matei Zaharia 
et al: 
Discretized
streams: 
fault-tolerant
streaming 
computation at
scale. SOSP 
2013

Batch 
Computation

Sequence of Immutable Partitioned Datasets 
(RDDs)



Unified Batch/Streaming Engines
● Apache Spark Streaming (Databricks)

○ Micro-batch computation with exactly-once guarantee

○ Back-pressure and water mark mechanisms

○ Structured streaming via SQL (2.0), continuous streaming (2.3)

● Apache Flink (Data Artisans, now Alibaba)

○ Tuple-at-a-time with exactly-once guarantee

○ Back-pressure and water mark mechanisms

○ Batch processing viewed as special case of streaming



Unified Batch/Streaming Engines
● Google Cloud Dataflow

○ Tuple-at-a-time with exactly-once guarantee

○ MR  FlumeJava  MillWheel  Dataflow

○ Google’s fully managed batch and stream service

● Apache Beam (API+SDK from Dataflow)

○ Abstraction for Spark, Flink, Dataflow w/ common API, etc

○ Individual runners for the different runtime frameworks

T. Akidau et al.: The Dataflow
Model: A Practical Approach to

Balancing Correctness, 
Latency, and

Cost in Massive-Scale, 
Unbounded,

Out-of-Order Data Processing

https://dl.acm.org/doi/pdf/10.14778/2824032.2824076
https://dl.acm.org/doi/pdf/10.14778/2824032.2824076


Data Stream Mining



Overview Stream Mining
● Streaming Analysis Model

○ Independent of actual storage model and processing system

○ Unbounded stream of data item S = (s1, s2, …)

○ Evaluate function f(S) as aggregate over stream or window of stream

○ Standing vs ad-hoc queries

● Recap: Classification of Aggregates

○ Additive aggregation functions (SUM, COUNT)

○ Semi-additive aggregation functions (MIN, MAX)

○ Additively computable aggregation functions (AVG, STDDEV, VAR)

○ Aggregation functions (e.g SORTING) -> approximations

● Example: Approximate # Distinct Items (e.g., KMV)



Stream Mining KMV
● Definition

○ Estimate the number of unique elements (cardinality) in a large data 

stream. 

○ KMV stores only a small, fixed-size subset of values derived from a 

hash function and uses that subset to make an accurate estimate.

● How it Works:

○ Hashing: Each stream element is passed through a hash function that 

generates a numeric value between 0 and 1.

○ Store K Smallest Hashes: KMV keeps only the K smallest hash values.

○ Estimate Cardinality  u using the formula: 

Beyer et al. 
On synopses 
for 
distinct-value
estimation 
under multiset 
operations. 
SIGMOD 2007

https://dl.acm.org/doi/pdf/10.1145/1247480.1247504
https://dl.acm.org/doi/pdf/10.1145/1247480.1247504


Stream Mining KMV
Beyer et al. 
On synopses 
for 
distinct-value
estimation 
under multiset 
operations. 
SIGMOD 2007

https://dl.acm.org/doi/pdf/10.1145/1247480.1247504
https://dl.acm.org/doi/pdf/10.1145/1247480.1247504
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● Summary and Q&A

○ Data Stream Processing

○ Distributed Stream Processing

○ Data Stream Mining

● Next Lectures

○ Distributed Machine Learning [Jan 17]

○ Written Exam [Feb 07]



Vielen Dank!


